Communication
ChemComm
Notes and references
1 For a book, see: (a) A. Kleemann, J. Engel, B. Kutschner and D. Reichert,
Pharmaceutical Substances: Syntheses, Patents, Applications, Georg Thieme,
Stuttgart, 4th edn, 2001; for selected references, see; (b) C. Torborg and
M. Beller, Adv. Synth. Catal., 2009, 351, 3027; (c) F. F. Fleming, L. Yao,
P. C. Ravikumar, L. Funk and B. C. Shook, J. Med. Chem., 2010, 53, 7902.
2 For a book, see: (a) R. C. Larock, Comprehensive Organic Transformations,
Wiley-VCH, Weinheim, 2nd edn, 1999; for a selected reference, see;
(b) C. W. Liskey, X. Liao and J. F. Hartwig, J. Am. Chem. Soc., 2010,
132, 11389.
3 For a book, see: (a) R. Bohlmann in Comprehensiv Organic Synthesis,
ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 6,
p. 203; for a selected reference, see; (b) T. Sandmeyer, Ber. Dtsch.
Chem. Ges., 1884, 17, 1633.
4 For a review, see: (a) D. T. Mowry, Chem. Rev., 1948, 42, 189; for
selected reference, see: (b) K. W. Rosenmund and E. Struck, Ber.
Dtsch. Chem. Ges., 1919, 52, 1749.
5 For reviews, see: (a) G. P. Ellis and T. M. Romney-Alexander, Chem.
Rev., 1987, 87, 779; (b) P. Anbarasan, T. Schareina and M. Beller,
Chem. Soc. Rev., 2011, 40, 5049 and references therein ; (c) J. Kim,
H. J. Kim and S. Chang, Angew. Chem., Int. Ed., 2012, 51, 11948; for
selected references, see: (d) P. Yu and B. Morandi, Angew. Chem., Int.
Ed., 2017, 56, 15693 and references therein.
6 For a review, see: J. Schorgenhumer and M. Waser, Org. Chem.
Front., 2016, 3, 1535 and references therein.
7 For a review, see: (a) Y. Ping, Q. Ding and Y. Peng, ACS Catal., 2016,
6, 5989 and references therein; For selected reference, see: (b) C. Qi,
X. Hua and H. Jiang, Chem. Commun., 2017, 53, 7994.
8 X. Jia, D. Yang, S. Zhang and J. Cheng, Org. Lett., 2009, 11, 4716.
9 H. Do and O. Daugulis, Org. Lett., 2010, 12, 2517.
10 J. M. Allen and T. H. Lambert, J. Am. Chem. Soc., 2016, 138, 10356.
11 G. Yan, C. Kuang, Y. Zhang and J. Wang, Org. Lett., 2010, 12, 1052
and references therein.
12 X. Hong, H. Wang, G. Qian, Q. Tan and B. Xu, J. Org. Chem., 2014,
79, 3228 and references therein.
13 A. B. Pawar and S. Chang, Org. Lett., 2015, 17, 660.
14 For a review, see: J. Cui, J. Song, Q. Liu, H. Liu and Y. Dong, Chem. –
Asian J., 2018, 13, 482 and references therein.
Scheme 6 Proposed mechanism for the Rh-catalyzed aromatic C–H
bond cyanation.
catalytic C–H bond cyanation reaction (Scheme 6). The catalytic
cycle starts from [Cp*Rh(III)]2+, which is generated in situ from
the precatalyst [RhCp*(MeCN)3](SbF6)2. Coordination of the
nitrogen atom of 1b to rhodium catalyst species and subsequent
ortho C–H bond activation would generate a cationic five-membered
rhodacyclic intermediate A. Then, the insertion of CRN moiety in
DMMN activated by CuO into the Rh–C bond would produce the
intermediate B, which would subsequently undergo C–C(N) bond
cleavage to afford product 2b and generate intermediate C.
Protodemetalation of C would proceed to generate isopropylnitrile
and regenerate catalytic species [Cp*Rh(III)]2+. The formation of
isopropylnitrile was detected by gas chromatography–mass
spectrometry.
15 (a) T.-J. Gong, B. Xiao, W.-M. Cheng, W. Su, J. Xu, Z.-J. Liu, L. Liu and Y. Fu,
J. Am. Chem. Soc., 2013, 135, 10630; (b) M. Chaitanya, D. Yadagiri and
P. Anbarasan, Org. Lett., 2013, 15, 4960; (c) M. Chaitanya and P. Anbarasan,
Org. Lett., 2015, 17, 3766; (d) M. Chaitanya and P. Anbarasan, J. Org. Chem.,
2015, 80, 3695.
16 (a) V. Grignard and E. Bellet, C. R. Acad. Sci., Ser. Gen. Vie Sci., 1914,
158, 457; (b) I. Klement, K. Lennick, C. E. Tucker and P. Knochel,
Tetrahedron Lett., 1993, 34, 4623; (c) T. V. Hughes and M. P. Cava,
J. Org. Chem., 1999, 64, 313.
17 (a) J. T. Reeves, C. A. Malapit, F. G. Buono, K. P. Sidhu, M. A. Marsini,
C. A. Sader, K. R. Fandrick, C. A. Busacca and C. H. Senanayake, J. Am.
Chem. Soc., 2015, 137, 9481; (b) C. A. Malapit, I. K. Luvaga, J. T. Reeves,
I. Volchkov, C. A. Busacca, A. R. Howell and C. H. Senanayake, J. Org.
Chem., 2017, 82, 4993.
In summary, we developed a rhodium-catalyzed aromatic
C–H bond direct cyanation by using safe, bench-stable, and
commercially available DMMN as a cyanating reagent for the
synthesis of aryl nitriles. The cyanation reaction of 2-phenylpyridine
and its derivatives with DMMN proceeded smoothly in the presence
of rhodium(III) complex and copper oxide as the catalyst and
promotor, respectively, to produce the corresponding aryl nitriles
in moderate to good yields. Synthetically useful functional
t
groups, namely, MeO(O)C, Cl, Br, and CH2OSiMe2 Bu, remained
intact during the C–H bond direct cyanation. Further studies on
the extensive use of the DMMN as a cyanating reagent for C–H
bond direct cyanation are ongoing.
We thank the National Natural Science Foundation of China
(No. 21573032 and 21602026) and the China Postdoctoral
Science Foundation (No. 2016M590226) for financial support
of this work.
18 C. A. Malapit, J. T. Reeves, C. A. Busacca, A. R. Howell and
C. H. Senanayake, Angew. Chem., Int. Ed., 2016, 55, 326.
19 S.-J. He, B. Wang, X. Lu, T.-J. Gong, Y.-N. Yang, X.-X. Wang, Y. Wang,
B. Xiao and Y. Fu, Org. Lett., 2018, 20, 5208.
20 It was considered that nucleophilic addition of [OAc]ꢀ in Cu(OAc)2 to
cyano group in DMMN would take place to generate a 1,3-diiminium-
copper complex. Thus, the target reaction was completely inhibited.
21 J. W. Ellingboe, M. Antane, T. T. Nguyen, M. D. Collini, S. Antane,
R. Bender, D. Hartupee, V. White, J. McCallum, C. H. Park, A. Russom,
M. B. Osler, A. Wojdan, J. Dinish, D. M. Ho and J. F. Bagli, J. Med.
Chem., 1994, 37, 542.
Conflicts of interest
22 (a) M. Chaitanya, D. Yadagiri and P. Anbarasan, Org. Lett., 2013,
15, 4960; (b) Y. Park, K. T. Park, J. G. Kim and S. Chang, J. Am. Chem.
Soc., 2015, 137, 4534.
There are no conflicts to declare.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2018