Organic Letters
Letter
Ed. 2009, 48, 5094. (j) Girard, S. A.; Knauber, T.; Li, C.-J. Angew.
Chem., Int. Ed. 2014, 53, 74.
(5) For a comprehensive review on the synthesis of isoquinoline via
C−H bond functionalization, see: He, R.; Huang, Z.-T.; Zheng, Q.-Y.;
Wang, C.-Y. Tetrahedron Lett. 2014, 55, 5705.
stitution, leading to product 3aa and side product 2-
hydroxyisobutyric acid (or the release of side product CO2
and acetone)15 along with the regeneration of the catalytically
active species for a new catalytic cycle.
In summary, we described an efficient cobalt-catalyzed C−H
activation/annulation of α-imino-oxy acids with terminal as
well as internal alkynes. Meanwhile, a strategy based on a
traceless oxidizing directing group was successfully utilized for
the process. The weakly coordinating nature of the carboxylic
acid plays a crucial role in the synthesis of isoquinolines. The
reaction exhibits a broad substrate scope, with the products
obtained in good yields. Further applications of the directing
group strategy in other related types of C−H functionalization
and detailed mechanistic studies are actively ongoing in our
laboratory.
(6) Recent reviews on the use of first-row transition-metal catalysts
for C−H bond functionalization, see: (a) Hirano, K.; Miura, M. Chem.
Lett. 2015, 44, 868. (b) Yamaguchi, J.; Muto, K.; Itami, K. Eur. J. Org.
Chem. 2013, 19. (c) Yoshikai, N. Synlett 2011, 1047. (d) Nakao, Y.
Chem. Rec. 2011, 11, 242. (e) Nakamura, E.; Yoshikai, N. J. Org.
Chem. 2010, 75, 6061. (f) Wei, D.-H.; Zhu, X.-J.; Niu, J.-L.; Song, M.-
P. ChemCatChem 2016, 8, 1242.
(7) First-row transition-metal-catalyzed C−H functionalization to
yield isoquinolines, see: (a) Shih, W. C.; Teng, C. C.; Parthasarathy,
K.; Cheng, C.-H. Chem. - Asian J. 2012, 7, 306. (b) He, R.-Y.; Huang,
Z.-T.; Zheng, Q.-Y.; Wang, C.-Y. Angew. Chem., Int. Ed. 2014, 53,
4950. (c) Lu, Q.-Q.; Greßies, S.; Cembellin, S.; Klauck, F.; Daniliuc,
C. G.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 12778. (d) Jia, T.;
Zhao, C.-Y.; He, R.-Y.; Chen, H.; Wang, C.-Y. Angew. Chem., Int. Ed.
2016, 55, 5268. (e) Wang, H.; Koeller, J.; Liu, W.; Ackermann, L.
Chem. - Eur. J. 2015, 21, 15525. (f) Sun, B.; Yoshino, T.; Kanai, M.;
Matsunaga, S. Angew. Chem., Int. Ed. 2015, 54, 12968. (g) Muralirajan,
K.; Kuppusamy, R.; Prakash, S.; Cheng, C.-H. Adv. Synth. Catal. 2016,
358, 774. (h) Sen, M.; Kalsi, D.; Sundararaju, B. Chem. - Eur. J. 2015,
21, 15529. (i) Wang, J.; Zha, S.; Chen, K.; Zhu, J. Org. Chem. Front.
2016, 3, 1281.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental procedures and spectral data for new
(8) (a) Zhou, S.-G.; Wang, M.-Y.; Wang, L.-L.; Chen, K.-H.; Wang,
J.-H.; Song, C.; Zhu, J. Org. Lett. 2016, 18, 5632. (b) Kuai, C.-S.;
Wang, L.-H.; Li, B.-B.; Yang, Z.-H.; Cui, X.-L. Org. Lett. 2017, 19,
2102.
AUTHOR INFORMATION
Corresponding Authors
■
(9) (a) Zhu, R.-Y.; Liu, L.-Y.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139,
12394. (b) Zhu, R.-Y.; Liu, L.-Y.; Park, H. S.; Hong, K.; Wu, Y.-W.;
Senanayake, C. H.; Yu, J.-Q. J. Am. Chem. Soc. 2017, 139, 16080.
(10) (a) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2017, 56, 12273.
(b) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692.
(11) (a) Zhang, L.-B.; Hao, X.-Q.; Liu, Z.-J.; Zheng, X.-X.; Zhang,
S.-K.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54, 10012.
(b) Wang, Y.; Du, C.; Wang, Y.-Y.; Guo, X.-K.; Fang, L.; Song, M.-P.;
Niu, J.-L.; Wei, D.-H. Adv. Synth. Catal. 2018, 360, 2668. (c) Guo, X.-
K.; Zhang, L.-B.; Wei, D.-H.; Niu, J.-L. Chem. Sci. 2015, 6, 7059.
(d) Du, C.; Li, P.-X.; Zhu, X.-J.; Suo, J.-F.; Niu, J.-L.; Song, M.-P. ;
Song, M.-P. Angew. Chem., Int. Ed. 2016, 55, 13571. (e) Du, C.; Li, P.-
X.; Zhu, X.-J.; Han, J.-N.; Niu, J.-L.; Song, M.-P. ACS Catal. 2017, 7,
2810. (f) Zhang, L.-B.; Hao, X.-Q.; Zhang, S.-K.; Liu, Z.-J.; Zheng, X.-
X.; Gong, J.-F.; Niu, J.-L.; Song, M.-P. Angew. Chem., Int. Ed. 2015, 54,
272.
(12) For examples of the N−O bond of the directing group acting as
an internal oxidant for C−H functionalization, see: (a) Ye, B.;
Cramer, N. Science 2012, 338, 504. (b) Guimond, N.; Gouliaras, C.;
Fagnou, K. J. Am. Chem. Soc. 2010, 132, 6908. (c) Yang, X.-F.; Liu, S.;
Yu, S.-J.; Kong, L.-H.; Lan, Y.; Li, X.-W. Org. Lett. 2018, 20, 2698.
(d) Huang, X.-L.; Huang, J.-S.; Du, C.-L.; Zhang, X.-Y.; Song, F.-J.;
You, J.-S. Angew. Chem., Int. Ed. 2013, 52, 12970.
(13) (a) Lafrance, M.; Fagnou, K. J. Am. Chem. Soc. 2006, 128,
16496. (b) Tan, G.-Y.; He, S.; Huang, X.-L.; Liao, X.-R.; Cheng, Y.-Y.;
You, J.-S. Angew. Chem., Int. Ed. 2016, 55, 10414. (c) Nguyen, T. T.;
Grigorjeva, L.; Daugulis, O. ACS Catal. 2016, 6, 551.
(14) (a) Gong, W.; Zhang, G.-F.; Liu, T.; Giri, R.; Yu, J.-Q. J. Am.
Chem. Soc. 2014, 136, 16940. (b) Zhang, Z.-Z.; Han, Y.-Q.; Zhan, B.-
B.; Wang, S.; Shi, B.-F. Angew. Chem., Int. Ed. 2017, 56, 13145. (c) Lv,
N.; Chen, Z.-K.; Liu, Y.; Liu, Z.-X.; Zhang, Y.-H. Org. Lett. 2018, 20,
5845−5848. (d) Moselage, M.; Li, J.; Ackermann, L. ACS Catal.
2016, 6, 498. (e) Hao, X.-Q.; Du, C.; Zhu, X.-J.; Li, P.-X.; Zhang, J.-
H.; Niu, J.-L.; Song, M.-P. Org. Lett. 2016, 18, 3610.
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The work described in this paper was supported by the
National Natural Science Foundation of China (nos. 21772179
and 21672192) and the Program for Science & Technology
Innovation Talents in Universities of Henan Province (no.
19HASTIT038).
REFERENCES
■
(1) (a) Bhadra, K.; Kumar, G. S. Med. Res. Rev. 2011, 31, 821.
(b) Kartsev, V. G. Med. Chem. Res. 2004, 13, 325. (c) Lim, C. W.;
Tissot, O.; Mattison, A.; Hooper, M. W.; Brown, J. M.; Cowley, A. R.;
Hulmes, D. I.; Blacker, A. J. Org. Process Res. Dev. 2003, 7, 379.
(d) Tsuboyama, A.; Iwawaki, H.; Furugori, M.; Mukaide, T.;
Kamatani, J.; Igawa, S.; Moriyama, T.; Miura, S.; Takiguchi, T.;
Okada, S.; Hoshino, M.; Ueno, K. J. Am. Chem. Soc. 2003, 125, 12971.
(2) Bentley, K. W. Nat. Prod. Rep. 2005, 22, 249.
(3) (a) Si, C.; Myers, A. G. Angew. Chem., Int. Ed. 2011, 50, 10409.
(b) Sha, F.; Huang, X. Angew. Chem., Int. Ed. 2009, 48, 3458.
(4) For reviews of C−H functionalization, see: (a) Ackermann, L.
Org. Process Res. Dev. 2015, 19, 260. (b) Collins, K. D.; Glorius, F.
Nat. Chem. 2013, 5, 597. (c) Li, B.-J.; Shi, Z.-J. Chem. Soc. Rev. 2012,
41, 5588. (d) Liu, C.; Yuan, J.; Gao, M.; Tang, S.; Li, W.; Shi, R.; Lei,
A. Chem. Rev. 2015, 115, 12138. (e) Shin, K.; Kim, H.; Chang, S. Acc.
Chem. Res. 2015, 48, 1040. (f) Colby, D. A.; Bergman, R. G.; Ellman,
J. A. Chem. Rev. 2010, 110, 624. (g) Engle, K. M.; Mei, T. S.; Wasa,
M.; Yu, J.-Q. Acc. Chem. Res. 2012, 45, 788. (h) Giri, R.; Shi, B.-F.;
Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242.
(i) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int.
(15) Davies, J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed.
2017, 56, 13361.
D
Org. Lett. XXXX, XXX, XXX−XXX