Q. Lin et al. / Dyes and Pigments 98 (2013) 100e105
105
[2] Uauy R, Olivares M, Gonzalez M. Essentiality of copper in humans. Am J Clin
Nutr 1998;67:952Se9S.
[3] Robinson NJ, Winge DR. Copper metallochaperones. Annu Rev Biochem 2010;
79:537e62.
[4] Thiele DJ, Gitlin JD. Assembling the pieces. Nat Chem Biol 2008;4:145e7.
[5] Mathie A, Sutton GL, Clarke CE, Veale EL. Zinc and copper: pharmacological
probes and endogenous modulators of neuronal excitability. Pharmacol Ther
2006;111:567e83.
[6] Madsen E, Gitlin JD. Copper and iron disorders of the brain. Annu Rev Neurosci
2007;30:317e37.
[7] Hirayama T, Van de Bittnera GC, Gray LW, Lutsenko S, Chang CJ. Near-infrared
fluorescent sensor for in vivo copper imaging in a murine Wilson disease
model. Proc Natl Acad Sci U S A 2012;109:2228e33.
[8] Valentine JS, Hart PJ. Misfolded CuZnSOD and amyotrophic lateral sclerosis.
Proc Natl Acad Sci U S A 2003;100:3617e22.
[34] Yang X, Wang EK. A nanoparticle autocatalytic sensor for Agþ and Cu2þ ions in
aqueous solution with high sensitivity and selectivity and its application in
test paper. Anal Chem 2011;83:5005e11.
[35] Wang WD, Fu AF, You JS, Gao G, Lan JB. Squaraine-based colorimetric and
fluorescent sensors for Cu2þ-specific detection and fluorescence imaging in
living cells. Tetrahedron 2010;66:3695e701.
[36] Ballesteros E, Moreno D, Gómez T, Rodríguez T, Rojo J, García-Valverde M,
et al. A new selective chromogenic and turn-on fluorogenic probe for cop-
per(II) in water-acetonitrile 1:1 solution. Org Lett 2009;11:1269e72.
[37] Hu Z-Q, Wang X-M, Feng Y-C, Ding L, Lu H-Y. Sulfonyl rhodamine hydrazide: a
sensitive and selective chromogenic and fluorescent chemodosimeter for
copper ion in aqueous media. Dye Pigment 2011;88:257e61.
[38] Zhang J, Yu CW, Qian SY, Lu G, Chen JL. A selective fluorescent chemosensor
with 1, 2, 4-triazole as subunit for Cu(II) and its application in imaging Cu(II)
in living cells. Dye Pigment 2012;92:1370e5.
[9] Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J. Isolation of a candidate
gene for Menkes disease and evidence that it encodes a copper-transporting
ATPase. Nat Genet 1993;3:7e13.
[39] Yuan L, Lin WY, Chen B, Xie YN. Development of FRET-based ratiometric
fluorescent Cu2þ chemodosimeters and the applications for living cell imag-
ing. Org Lett 2012;14:432e5.
[10] Kaler SG. ATP7A-related copper transport diseases-emerging concepts and
future trends. Nat Rev Neurol 2011;7:15e29.
[11] Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer’s disease.
J Biol Inorg Chem 2010;15:61e76.
[40] Wang LN, Yan JX, Qin WW, Liu WS, Wang R. A new rhodamine-based single
molecule multianalyte (Cu2þ, Hg2þ) sensor and its application in the biological
system. Dye Pigment 2012;92:1083e90.
[41] Qi JJ, Han MS, Tung C. A benzothiazole alkyne fluorescent sensor for Cu
detection in living cell. Bioorg Med Chem Lett 2012;22:1747e9.
[42] Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ. A selective turn-on fluores-
cent sensor for imaging copper in living cells. J Am Chem Soc 2006;128:10e1.
[43] Domaille DW, Zeng L, Chang CJ. Visualizing ascorbate-triggered release of
labile copper within living cells using a ratiometric fluorescent sensor. J Am
Chem Soc 2010;132:1194e5.
[12] Lee JC, Gray HB, Winkler JR. Copper(II) binding to
a-synuclein, the Parkinson’s
protein. J Am Chem Soc 2008;130:6898e9.
[13] Guidelines for drinking-water quality. Geneva: World Health Organization;
1996.
[14] Aragay G, Pons J, Merkoçi A. Recent trends in macro-, micro-, and
nanomaterial-based tools and strategies for heavy-metal detection. Chem Rev
2011;111:3433e58.
[15] Quang DT, Kim JS. Fluoro- and chromogenic chemodosimeters for heavy metal
ion detection in solution and biospecimens. Chem Rev 2010;110:6280e301.
[16] Formica M, Fusi V, Giorgi L, Micheloni M. New fluorescent chemosensors for
metal ions in solution. Coord Chem Rev 2012;256:170e92.
[17] Kim HN, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based
fluorescent and colorimetric chemosensors. Chem Soc Rev 2011;40:79e93.
[18] Yang YM, Zhao Q, Feng W, Li FY. Luminescent chemodosimeters for bio-
[19] Vendrell M, Zhai D, Er JC, Chang Y-T. Combinatorial strategies in fluorescent
probe development. Chem Rev 2012;112:4391e420.
[20] Zhang XL, Liu T, Han G, Li HQ, Duan CY. Dual-functional gadolinium-based
copper(II) probe for selective magnetic resonance imaging and fluorescence
sensing. Inorg Chem 2012;51:2325e31.
[21] Basa PN, Sykes AG. Differential sensing of Zn(II) and Cu(II) via two indepen-
[22] Zhang JJ, Riskin M, Tel-Vered R, Tian H, Willner I. Optically activated uptake
and release of Cu2þ or Agþ ions by or from a photoisomerizable monolayer-
modified electrode. Langmuir 2011;27:1380e6.
[23] Guo ZQ, Zhu WH, Xiong YY, Tian H. Multiple logic fluorescent thermometer
system based on N-isopropylmethacrylamide copolymer bearing
dicyanomethylene-4H-pyran moiety. Macromolecules 2009;42:1448e53.
[24] Guo ZQ, Zhu WH, Tian H. Hydrophilic copolymer bearing dicyanomethylene-
4H-pyran moiety as fluorescent film sensor for Cu2þ and pyrophosphate
anion. Macromolecules 2010;43:739e44.
[44] Liu J, Lu Y. A DNAzyme catalytic beacon sensor for paramagnetic Cu2þ Ions in
aqueous solution with high sensitivity and selectivity. J Am Chem Soc 2007;
129:9838e9.
[45] Liu ZP, Zhang CL, Wang XQ, He WJ, Guo ZJ. Design and synthesis of a ratio-
metric fluorescent chemosensor for Cu(II) with a fluorophore hybridization
approach. Org Lett 2012;14:4378e81.
[46] Yu CW, Wang T, Xu K, Zhao J, Li MH, Weng SX, et al. Characterization of a
highly Cu2þ-selective fluorescent probe derived from rhodamine B. Dye
Pigment 2013;96:38e44.
[47] Aksuner N, Henden E, Yilmaz I, Cukurovali A. A highly sensitive and selective
fluorescent sensor for the determination of copper(II) based on a schiff base.
Dye Pigment 2009;83:211e7.
[48] Wang JZ, Zhou XP, Ma HB, Tao GH. Diethyldithiocarbamate functionalized
CdSe/CdS quantum dots as a fluorescent probe for copper ion detection.
Spectrochim Acta A 2011;81:178e83.
[49] Koneswaran M, Narayanaswamy R. l-Cysteine-capped ZnS quantum dots
based fluorescence sensor for Cu2þ ion. Sens Actuator B 2009;139:104e9.
[50] Strasser CE, Catalano VJ. “On-Off” Au(I).Cu(I) interactions in a Au(NHC)2
luminescent vapochromic sensor. J Am Chem Soc 2010;132:10009e11.
[51] Viswanathan K. Utilizing a tripeptide conjugated fluorescent hybrid nano-
particles as a fluorescence sensor for the determination of copper ions. Sens
Actuator A 2012;175:15e8.
[52] Barja BC, Bari SE, Marchi MC, Iglesias FL, Bernardi M. Luminescent Eu(III)
hybrid sensors for in situ copper detection. Sens Actuator
B 2011;158:
214e22.
[25] Chen SJ, Yang YH, Wu Y, Tian H, Zhu WH. Multi-addressable photochromic
terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge:
multifunctional molecular logic gates on unimolecular platform. J Mater Chem
2012;22:5486e94.
[53] Meuccia V, Laschib S, Minunnib M, Prettic C, Intorrea L, Soldania G, et al. An
optimized digestion method coupled to electrochemical sensor for the
determination of Cd, Cu, Pb and Hg in fish by square wave anodic stripping
voltammetry. Talanta 2009;77:1143e8.
[26] Chamjangali MA, Soltanpanah S, Goudarzi N. Development and character-
ization of a copper optical sensor based on immobilization of synthesized 1-
phenyl-1,2-propanedione-2-oxime thiosemicarbazone on a triacetylcellulose
membrane. Sens Actuator B 2009;138:251e6.
[54] Oztekin Y, Ramanaviciene A, Ramanavicius A. Electrochemical copper (II)
sensor based on self-assembled 4-amino-6-hydroxy-2-mercaptopyrimidine
monohydrate. Sens Actuator B 2011;155:612e7.
[55] Shirmardi-Dezaki A, Shamsipur M, Akhond M, Sharghi H, Doroodmand MM.
Array of potentiometric sensors for simultaneous determination of copper,
silver, and cadmium ions in complex mixtures. Electrochim Acta 2012;62:
84e90.
[56] Zhang Y-M, Lin Q, Wei T-B, Wang D-D, Yao H, Wang Y-L. Simple colorimetric
sensors with high selectivity for acetate and chloride in aqueous solution.
Sens Actuator B 2009;137:447e55.
[57] Zhang Y-M, Lin Q, Wei T-B, Qin X-P, Li Y. A novel smart organogel which could
allow a two channel anion response by proton controlled reversible solegel
transition and color changes. Chem Commun 2009:6074e6.
[27] Narayanaswamy N, Govindaraju T. Aldazine-based colorimetric sensors for
Cu2þ and Fe3þ. Sens Actuator B 2012;161:304e10.
[28] Chereddy NR, Thennarasu S. Synthesis of a highly selective bis-rhodamine
chemosensor for naked-eye detection of Cu2þ ions and its application in
bio-imaging. Dye Pigment 2011;91:378e82.
[29] Chandrasekhar V, Das S, Yadav R, Hossain S, Parihar R, Subramaniam G, et al.
Novel chemosensor for the visual detection of copper(II) in aqueous solution
at the ppm level. Inorg Chem 2012;51:8664e6.
[30] Tang LJ, Li FF, Liu MH, Nandhakumar R. Single sensor for two metal ions:
colorimetric recognition of Cu2þ and fluorescent recognition of Hg2þ. Spec-
trochim Acta A 2011;78:1168e72.
[58] Liu M-X, Wei T-B, Lin Q, Zhang Y-M. A novel 5-mercapto triazole schiff base as
a selective chromogenic chemosensor for Cu2þ. Spectrochim Acta A 2011;79:
1837e42.
[31] Mahapatra AK, Hazra G, Das NK, Goswami S.
A highly selective
triphenylamine-based indolylmethane derivatives as colorimetric and turn-
off fluorimetric sensor toward Cu2þ detection by deprotonation of second-
ary amines. Sens Actuator B 2011;156:456e62.
[59] Li J-Q, Wei T-B, Lin Q, Li P, Zhang Y-M. Mercapto thiadiazole-based sensor
with colorimetric specific selectivity for AcOꢁ in aqueous solution. Spec-
trochim Acta A 2011;83:187e93.
[32] Wang HX, Yang L, Zhang WB, Zhou Y, Zhao B, Li XY. A colorimetric probe for
copper(II) ion based on 4-amino-1,8-naphthalimide. Inorg Chim Acta 2012;
381:111e6.
[60] Lin Q, Fu Y-P, Chen P, Wei T-B, Zhang Y-M. Colorimetric chemosensors
designed to provide high sensitivity for Hg2þ in aqueous solutions. Dye
Pigment 2013;96:1e6.
[33] Shao N, Jin JY, Wang H, Zhang Y, Yang RH, Chan WH. Tunable photochromism
of spirobenzopyran via selective metal ion coordination: an efficient visual
and ratioing fluorescent probe for divalent copper ion. Anal Chem 2008;80:
3466e75.
[61] Liu Y, You C, Zhang H. Supramolecular chemistry, molecular recognition and
assembly of synthetic receptors. Tianjin: Nankai University Press; 2001.
[62] Analytical Methods Committee. Recommendations for the definition, esti-
mation and use of the detection limit. Analyst 1987;112:199e204.