Page 3 of 4
ChemComm
DOI: 10.1039/C6CC08320J
Key Laboratory of Functional Molecular Engineering of Guangdong
Province, School of Chemistry and Chemical Engineering, South China
45 University of Technology, Guangzhou 510640, China. Fax: +86 20-
87112906; Tel: +86 20-87112906; E-mail: cewuwq@scut.edu.cn,
the aid of acetaldoxime (Scheme 2, Eqn. 3).
To gain more insight into the mechanism of this reaction,
several control experiments were performed (Scheme 3). Initially,
when benzylideneacetone (7) was used to replace eneꢀyneꢀ
† Electronic Supplementary Information (ESI) available: Experimental
section, characterization of all compounds, copies of 1H and 13C NMR
50 spectra for selected compounds. See DOI: 10.1039/b000000x/
5
ketones under the standard conditions, a Michaelꢀaddition
product 8 was obtained in 84% yield, indicating that the
transformation could start with a Michaelꢀaddition pathway in
this situation (Scheme 3, Eqn. 1).13 The deuteriumꢀlabeling
experiments were next conducted. On one hand, the reaction of
1. a) A. U. Rao, D. Xiao, X. Huang, W. Zhou, J. Fossetta, D. Lundell, F.
Tian, P. Trivedi, R. Aslanian and A. Palani, Bioorg. Med. Chem. Lett.,
2012, 22, 1068; b) F. Hasegawa, K. Niidome, C. Migihashi, M.
10 1a and 2 was performed in dry DMF at room temperature for 6 h
in the presence of KF and D2O. It was found that the reaction
afforded [D1]ꢀ3a in 78% total yield with 85% D (Scheme 1, Eqn.
2). On the other hand, [D1]ꢀ3a was not detected by the treatment
of cyanofurans 3a in the same conditions (Scheme 3, Eqn. 3). The
15 structure of [D1]ꢀ3a shows that one of the hydrogen atom on the
methylene position comes from water. In consideration of the
result of the first reaction, the most possible way is that the
hydrogen atom of water inserts into the vinyl moiety of eneꢀyneꢀ
ketones with the CN anion via a Michaelꢀaddition and then
20 transfer to the methylene position through a hydrogen shift during
the process of aromatic isomerization (Scheme 1, b).
55
60
65
70
75
80
Murata, T. Negoro, T. Matsumoto, K. Kato and A. Fujii, Bioorg. Med.
Chem. Lett., 2014, 24, 4266; c) B. H. Lipshutz, Chem. Rev., 1986, 86.
795; d) N. Kumari, C. B. Mishra, A. Prakash, N. Kumar, R. Mongre
and P. M. Luthra, Neurosci. Lett., 2014, 558, 203.
2. a) Z. Li, H. Li, S. Chen, T. Froehlich, C. Yi, C. Schönenberger, M.
Calame, S. Decurtins, S.ꢀX. Liu and E. Borguet, J. Am. Chem. Soc.,
2014, 136, 8867; b) C. MorenoꢀYruela, J. Garín, J. Orduna, S. Franco,
E. Quintero, J. T. L. Navarrete, B. E. Diosdado, B. Villacampa, J.
Casado and R. Andreu, J. Org. Chem., 2015, 80, 12115; c) A. A.
Mazurov, L. Miao, B. S. Bhatti, J.ꢀP. Strachan, S. Akireddy, S. Murthy,
D. Kombo, Y. Xiao, P. Hammond, J. Zhang, T. A. Hauser, K. G.
Jordan, C. H. Miller, J. D. Speake, G. J. Gatto and D. Yohannes, J.
Med. Chem., 2012, 55, 9181; d) C. Zeng, H. Seino, J. Ren, K. Hatanaka
and N. Yoshie, Macromolecules, 2013, 46, 1794.
3. a) J. A. Marshall, L. M. McNulty and D. Zou, J. Org. Chem., 1999, 64,
5193; b) X. Wang, K. F. Bastow, C.ꢀM. Sun, Y.ꢀL. Lin, H.ꢀJ. Yu, M.ꢀJ.
Don, T.ꢀS. Wu, S. Nakamura and K.ꢀH. Lee, J. Med. Chem., 2004, 47,
5816.
4. For reviews: a) B. A. Keay, Chem. Soc. Rev., 1999, 28, 209; b) A. V.
Gulevich, A. S. Dudnik, N. Chernyak and V. Gevorgyan, Chem. Rev.,
2013, 113, 3084; c) S. F. Kirsch, Org. Biomol. Chem., 2006, 4, 2076.
5. a) M. Sun, H.ꢀY. Zhang, Q. Han, K. Yang and S.ꢀD. Yang, Chem. Eur.
J., 2011, 17, 9566; b) H. Shen, J. Li, Q. Liu, J. Pan, R. Huang and Y.
Xiong, J. Org. Chem., 2015, 80, 7212; c) L. Zhang, Z. Peng, Q. Wen,
X. Li, P. Lu and Y. Wang, Org. Lett., 2016, 18, 728; d) Q. Wen, P. Lu
and Y. Wang, Chem. Commun., 2015, 51, 15378; e) J. Mangasꢀ
Sánchez, E. Busto, V. GotorꢀFernández and V. Gotor, Org. Lett., 2012,
14, 1444; f) J. Hu, Y. Wei and X. Tong, Org. Lett., 2011, 13, 3068; g)
S. H. Kim, S. H. Kim, K. H. Kim and J. N. Kim, Tetrahedron Lett.
2010, 51, 860; h) S. H. Kim, Y. M. Kim, H. S. Lee and J. N. Kim,
Tetrahedron Lett. 2010, 51, 1592; i) P. Bertus and J. Szymoniak, J.
Org. Chem., 2003, 68, 7133.
6. a) X. Zhang, W. Dai, W. Wu and S. Cao, Org. Lett., 2015, 17, 2708; b)
L. Wang, X. Liu, M. Wang and J. Liu, Org. Lett., 2016, 18, 2162; c)
C.ꢀJ. Lee, T.ꢀH. Chang, J.ꢀK. Yu, G. M. Reddy, M.ꢀY. Hsiao and W.
Lin, Org. Lett., 2016, 18, 3758; d) W. Liu and L. Ackermann, Chem.
Commun., 2014, 50, 1878.
7. a) Y. Xia, S. Qu, Q. Xiao, Z.ꢀX. Wang, P. Qu, L. Chen, Z. Liu, L. Tian,
Z. Huang, Y. Zhang and J. Wang, J. Am. Chem. Soc., 2013, 135, 13502;
b) T. Yao, X. Zhang and R. C. Larock, J. Am. Chem. Soc., 2004, 126,
11164; c) M. J. González, E. López and R. Vicente, Chem. Commun.,
2014, 50, 5379; d) S. Mata, L.A. López and R. Vicente, Chem. Eur. J.,
2015, 21, 8998; e) B. Song, L.ꢀH. Li, X.ꢀR. Song, Y.ꢀF. Qiu, M.ꢀJ.
Zhong, P.ꢀX. Zhou and Y.ꢀM. Liang, Chem. Eur. J., 2014, 20, 5910; f)
H. Cao, H. Zhan, J. Cen, J. Lin, Y. Lin, Q. Zhu, M. Fu and H. Jiang,
Org. Lett., 2013, 15, 1080; g) J. Ma, H. Jiang and S. Zhu, Org. Lett.,
2014, 16, 4472; h) D. Zhu, J. Ma, K. Luo, H. Fu, L. Zhang and S. Zhu,
Angew. Chem. Int. Ed., 2016, 55, 8452.
8. a) J. González, J. González, C. PérezꢀCalleja, L. A. López and R.
Vicente, Angew. Chem. Int. Ed., 2013, 52, 5853; b) R. Vicente, J.
González, L. Riesgo, J. González and L. A. López, Angew. Chem. Int.
Ed., 2012, 51, 8063.
9. a) Y. Xia, Z. Liu, R. Ge, Q. Xiao, Y. Zhang and J. Wang, Chem.
Commun., 2015, 51, 11233; b) Y. Xia, R. Ge, L. Chen, Z. Liu, Q. Xiao,
Y. Zhang and J. Wang, J. Org. Chem., 2015, 80, 7856; c) F. Hu, Y.
Xia, C. Ma, Y. Zhang and J. Wang, J. Org. Chem., 2016, 81, 3275; d)
F. Hu, Y. Xia, C. Ma, Y. Zhang and J. Wang, Org. Lett., 2014, 16,
4082.
85
90
Scheme 3. Control experiments
In conclusion, we have established a highly efficient protocol
25 for the synthesis of various cyanofurans via Michaelꢀ
addition/cyclization of eneꢀyneꢀketones with trimethylsilyl
cyanide. These valuable products could easily transfer to other
biologically active molecules such as furoꢀfuranimines, furoꢀ
pyridazines and carboxamidoꢀfurans. Furthermore, this method
30 features transitionꢀmetalꢀfree, broad substrate scope, high
efficiency and atom economy, which make it attractive and
practical. Deuteriumꢀlabeling experiments have been conducted
to clarify the reaction pathway. Further applications of this
reaction is currently underway in our laboratory.
95
100
105
110
35
The authors thank the National Key Research and Development
Program of China (2016YFA0602900), the National Natural
Science Foundation of China (21420102003 and 21490572),
40 Pearl River S&T Nova Program of Guangzhou (201610010160)
for financial support.
Notes and references
10. a) J. S. Clark, A. Boyer, A. Aimon, P. E. García, D. M. Lindsay, A. D.
F. Symington and Y. Danoy, Angew. Chem. Int. Ed., 2012, 51, 12128;
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3