2-(4-Bromophenyl)naphtho[2,3-d]oxaphosphole (4f)
Acknowledgements
3-Phosphino-2-naphthol (3, 0.600 g, 3.41 mmol) and 4-bromo-
N-phenylbenzimidoyl chloride (3, 1.86 g, 6.31 mmol) were
added in a 250 mL round bottom flask with a stir bar. The flask
was outfitted with a reflux condenser and flushed with nitrogen.
THF (30 mL) was added by cannula and the solution was
refluxed for 20 hours. The reaction mixture was taken into a dry
box and filtered using glass fritted filter funnel. The solid was
extracted 2 times with THF (∼5 mL), the combined filtration
was evaporated under vacuum yield a brown solid. The solid
was dissolved in CH2Cl2 (∼75 mL), washed successively with
degassed solutions of aqueous HCl (1.2 M, 100 mL), aqueous
NaOH (1 M, 100 mL) and distilled H2O (100 mL). The solvent
was removed under vacuum to a yield yellow solid, which was
washed with degassed ethanol (∼150 mL) and recrystallized
from toluene at −45 °C to yield yellow solid 4f (0.380 g,
We thank the National Science Foundation for support
(CHE-0748982 and CHE-1150721).
Notes and references
1 J. Heinicke and A. Tzschach, Z. Chemie, 1980, 20, 342–343.
2 J. Heinicke and A. Tzschach, Phosphorus, Sulfur Silicon Relat. Elem.,
1985, 25, 345–356.
3 L. Nyulaszi, G. Csonka, J. Reffy, T. Veszpremi and J. Heinicke,
J. Organomet. Chem., 1989, 373, 49–55.
4 F. Mathey, Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a
New Domain, Pergamon, Amsterdam, 2001.
5 K. B. Dillon, F. Mathey and J. F. Nixon, Phosphorus: The Carbon Copy,
John Wiley & Sons, New York, 1998.
6 V. R. Appel, F. Knoll and I. Ruppert, Angew. Chem., 1981, 93, 771–784.
7 L. N. Markovski and V. D. Romanenko, Tetrahedron, 1989, 45,
6019–6090.
1
3
8 F. Mathey, Acc. Chem. Res., 1992, 25, 90–96.
32.8%). H NMR: δ 8.52 (d, 1H, JPH = 4.8 Hz), 8.16 (s, 1H),
9 F. Mathey, Angew. Chem., Int. Ed. Engl., 2003, 42, 1578–1604.
10 M. P. Washington, V. B. Gudimetla, F. L. Laughlin, N. Deligonul, S. He,
J. L. Payton, M. C. Simpson and J. D. Protasiewicz, J. Am. Chem. Soc.,
2010, 132, 4566–4567.
11 (a) L. J. Higham, The Primary Phosphine Renaissance in Phosphorus
Compounds: Advanced Tools in Catalysis and Material Sciences,
ed. M. Peruzzini and L. Gonsalvi, Springer, Germany, 2011;
(b) R. M. Hiney, A. Ficks, H. Müller-Bunz, D. G. Gilheany and
L. J. Higham, Air-stable Chiral Primary Phosphines: Part (i) Synthesis,
Stability and Reactivity in Specialist Periodical Reports: Organometallic
Chemistry, ed. I. J. S. Fairlamb and J. M. Lynam, Royal Society of
Chemistry, London, UK, 2011, pp. 27–45.
12 Some reviews: (a) D. Lehnherr and R. R. Tykwinski, Materials, 2010, 3,
2772–2800; (b) Y. Kunugi, J. Soc. Inorg. Mater., Jpn., 2010, 17,
182–187; (c) Y. Yamashita, Sci. Technol. Adv. Mater., 2009, 10, No pp
given (d) W. J. Potscavage Jr., A. Sharma and B. Kippelen, Acc. Chem.
Res., 2009, 42, 1758–1767; (e) B. Nickel, Organ. Electron., 2009,
301–315; (f) X. Feng, W. Pisula and K. Muellen, Pure Appl. Chem.,
2009, 81, 2203–2224; (g) B. Nickel, M. Fiebig, S. Schiefer, M. Goellner,
M. Huth, C. Erlen and P. Lugli, Phys. Status Solidi A, 2008, 205,
526–533; (h) M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter,
2008, 20, 184011–184016; (i) J. E. Anthony, Angew. Chem., Int. Ed.
Engl., 2008, 47, 452–483; ( j) M. T. Lloyd, J. E. Anthony and
G. G. Malliaras, Materials Today, 2007, 10, 34–41 edn.
3
7.97 (m, 4H), 7.59 (d, 2H, JHH = 8.4 Hz), 7.50 (m, 2H);
31P{1H} NMR: δ 86.7 (s, 1P); 13C{1H} NMR: δ 198.3 (d, JPC
=
54.8 Hz), 158.0 (d, JPC = 3.6 Hz), 136.4 (d, JPC = 37.0 Hz),
133.5 (d, JPC = 13.1 Hz), 133.0 (d, JPC = 2.7 Hz), 132.1, 130.2
(d, JPC = 10.3 Hz), 129.0 (d, JPC = 19.2 Hz), 127.8, 127.8,
126.5 (d, JPC = 14.9 Hz), 126.3, 124.9, 124.3 (d, JPC = 6.0 Hz),
109.2; UV (CH2Cl2): λmax, nm (ε, M−1 cm−1) 357 (28086);
Fluorescence (CH2Cl2, 5 × 10−6 M): λex, nm (Int.) 464 (633);
Quantum yield (CH2Cl2): ΦF 0.125; mp 202–205 °C; HRMS
m/z: 339.9655 (calc. 339.9653).
2-(4-Methoxyphenyl)naphtho[2,3-d]oxaphosphole (4g)
3-Phosphino-2-naphthol (3, 0.500 g, 2.84 mmol) and 4-
methoxy-N-phenylbenzimidoyl chloride (1.68 g, 6.84 mmol)
were added in a 250 mL round bottom flask with a stir bar. The
flask was outfitted with a reflux condenser and flushed with
nitrogen. THF (25 mL) was added by cannula and the solution
was refluxed for 20 hours. The reaction mixture was taken into a
dry box and filtered using glass fritted filter funnel. The solid
was extracted 2 times with THF (∼5 mL) and the combined
filtrate was evaporated under vacuum yield a brown solid.
The solid was dissolved in CH2Cl2 (∼75 mL), washed succes-
sively with degassed solutions of aqueous HCl (1.2 M, 100 mL),
aqueous NaOH (1 M, 100 mL) and distilled H2O (100 mL).
The solvent was removed under vacuum to yield a yellow solid
which was washed with degassed ethanol (∼150 mL) and recrys-
tallized from toluene at −45 °C to yield yellow solid 4g
13 U. H. F. Bunz, Pure Appl. Chem., 2010, 82, 953–968.
14 M. Hissler, P. W. Dyer and R. Reau, Top. Curr. Chem., 2005, 250,
127–163.
15 Recent reports: (a) J.-H. Wan, W.-F. Fang, Y.-B. Li, X.-Q. Xiao,
L.-H. Zhang, Z. Xu, J.-J. Peng and G.-Q. Lai, Org. Biomol. Chem., 2012,
10, 1459–1466; (b) Y. Ren and T. Baumgartner, J. Am. Chem. Soc., 2011,
133, 1328–1340; (c) Y. Matano, A. Saito, T. Fukushima, Y. Tokudome,
F. Suzuki, D. Sakamaki, H. Kaji, A. Ito, K. Tanaka and H. Imahori,
Angew. Chem., Int. Ed., 2011, 50, 8016–8020, S8016/8011–S8016/8027
(d) Y. Matano, Y. Kon, A. Saito, Y. Kimura, T. Murafuji and H. Imahori,
Chem. Lett., 2011, 40, 919–921; (e) R. A. Krueger, T. J. Gordon,
T. C. Sutherland and T. Baumgartner, J. Polym. Sci., Part A Polym.
Chem., 2011, 49, 1201–1209; (f) S. Durben and T. Baumgartner, Inorg.
Chem., 2011, 50, 6823–6836; (g) S. Durben and T. Baumgartner, Angew.
Chem., Int. Ed., 2011, 50, 7948–7952; (h) T. Linder, T. C. Sutherland and
T. Baumgartner, Chem.–Eur. J., 2010, 16, 7101–7105; (i) S. Durben,
T. Linder and T. Baumgartner, New J. Chem., 2010, 34, 1585–1592;
( j) D. R. Bai, C. Romero-Nieto and T. Baumgartner, Dalton Trans.,
2010, 39, 1250–1260; (k) A. Saito, T. Miyajima, M. Nakashima,
T. Fukushima, H. Kaji, Y. Matano and H. Imahori, Chem.–Eur. J., 2009,
15, 10000–10004; (l) Y. Dienes, M. Eggenstein, T. Karpati,
T. C. Sutherland, L. Nyulaszi and T. Baumgartner, Chem.–Eur. J., 2008,
14, 9878–9889; (m) Y. Dienes, M. Eggenstein, T. Neumann, U. Englert
and T. Baumgartner, Dalton Trans., 2006, 1424–1433.
3
(0.600 g, 72.3%). 1H NMR: δ 8.47 (d, 1H, JPH = 4.8 Hz),
8.13 (s, 1H), 8.05 (m, 2H), 7.94 (m, 2H), 7.48 (m, 2H), 6.98
(m, 2H); 31P{1H} NMR: δ 74.9 (s, 1P); 13C{1H} NMR: δ 200.2
(d, JPC = 56.2 Hz), 161.4 (d, JPC = 4.8 Hz), 157.9 (d, JPC
3.2 Hz), 142.0(d, JPC = 20.1 Hz), 136.9 (d, JPC = 37.3 Hz),
132.7 (d, JPC = 2.4 Hz), 130.1 (d, JPC = 9.8 Hz), 128.4 (d, JPC
19.3 Hz), 127.7, 127.7, 126.9 (d, JPC = 14.5 Hz), 125.9, 124.6,
114.3, 108.8, 55.5; UV (CH2Cl2): λmax, nm (ε, M−1 cm−1
=
=
)
360 (23566); Fluorescence (CH2Cl2, 5 × 10−6 M): λex, nm
(Int.) 470 (876); Quantum yield (CH2Cl2): ΦF 0.219; mp
195–198 °C; Elemental analysis: Calc. for C18H13O2P
(M. W. 292.27), C 73.91%, H 4.48%; found: C 73.40%, H
4.16%.
16 B. Dhawan and D. Redmore, J. Org. Chem., 1991, 56, 833–835.
17 B. Stewart, A. Harriman and L. J. Higham, Organometallics, 2011, 30,
5338–5343.
18 L. J. Higham, Catal. Met. Complexes, 2011, 37, 1–19.
19 M. M. Rauhut and H. A. Currier, J. Org. Chem., 1961, 26, 4626–4628.
12022 | Dalton Trans., 2012, 41, 12016–12022
This journal is © The Royal Society of Chemistry 2012