Recently, we developed an intermolecular, metal-free,
direct oxidative method of CÀN bond formation via cross-
coupling of nonprefunctionalized arenes mediated by a
hypervalent iodine7 reagent.3a The products were ob-
tained regioselectively at ambient temperature. Neverthe-
less, electron-poor arenes were not reactive under the
developed reaction conditions. Simultaneously, Chang
et al.8a and DeBoef et al.8b reported similar transformation
using the same reagent. Interestingly, conducting the reac-
tion at higher temperature allowed functionalization of
electron poor arenes. The application of higher tempera-
ture required increased amounts of reagent due to low
thermostability of (diacetoxy)iodobenzene and resulted
in nonregioselective formation of aminated products.
Inspired by the possibilty of functionalization of CÀH
bonds under metal-free conditions via cross-amination,
we were motivated to develop mild organocatalytic
conditions.9 We envisaged that application of nitrenium
Table 1. Optimization of the Organocatalytic Cross Aminationa
entry
ArI (mol %)
PhI (20)
solvent time [h] yield [%]b
o:pc
1
CHCl3
6
62
71
50
82
76
62
76
69
93
50
62
nd
5:1
3:1
2
4-MeC6H4I (20) CHCl3
4
3
4-FC6H4I (20)
3 (10)
CHCl3
CHCl3
CH2Cl2
CCl4
7
4:1
4
3
2.5:1
3:1
5
3 (10)
3.5
3.5
3.5
2
6
3 (10)
3:1
7
3 (10)
DCE
6:1
8d
9e
10d,f
11d,g
3 (10)
DCE
DCE
6:1
3 (10)
7
3.5:1
5:1
3 (10)
DCE
4
3 (10)
DCE
4
6:1
12d,h 3 (10)
DCE
3
nd
(5) (a) Monguchi, D.; Fujiwara, T.; Furukawa, H.; Mori, A. Org.
Lett. 2009, 11, 1607. (b) Wang, Q.; Schreiber, S. L. Org. Lett. 2009, 11,
5178. (c) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew. Chem., Int.
Ed. 2009, 48, 9127. (d) Kim, J. Y.; Cho, S. H.; Joseph, J.; Chang, S.
Angew. Chem., Int. Ed. 2010, 49, 9899. (e) Kawano, T.; Hirano, K.;
Satoh, T.; Miura, M. J. Am. Chem. Soc. 2010, 132, 6900. (f) Zhao, H.;
Wang, M.; Su, W.; Hong, M. Adv. Synth. Catal. 2010, 352, 1301. (g)
Miyasaka, M.; Hirano, K.; Satoh, T.; Kowalczyk, R.; Bolm, C.; Miura,
M. Org. Lett. 2011, 13, 359. (h) Matsuda, N.; Hirano, K.; Satoh, T.;
Miura, M. Org. Lett. 2011, 13, 2860. (i) Liu, X.-Y.; Gao, P.; Shen, Y.-W.;
Liang, Y.-M. Org. Lett. 2011, 13, 4196. (j) Li, Y.; Liu, J.; Xie, Y.; Zhang,
R.; Jin, K.; Wang, X.; Duan, C. Org. Biomol. Chem. 2012, 10, 3715. For
recent transition-metal-free CÀH amination of benzoxazoles, see: (k)
Joseph, J.; Kim, Y. J.; Chang, S. Chem.;Eur. J. 2011, 17, 8294. (l)
Froehr, T.; Sindlinger, C. P.; Kloeckner, U.; Finkbeiner, P.;
Nachtsheim, B. J. Org. Lett. 2011, 13, 3754. (m) Lamani, M.; Prabhu,
K. R. J. Org. Chem. 2011, 76, 7938. (n) Wertz, S.; Kodama, S.; Studer, A.
Angew. Chem., Int. Ed. 2011, 50, 11511.
(6) (a) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc. 2006,
128, 9048. (b) Ng, K.-H.; Chan, A. S. C.; Yu, W.-Y. J. Am. Chem. Soc.
2010, 132, 12862. (c) Xiao, B.; Gong, T.-J.; Xu, J.; Liu, Z.-J.; Liu, L.
J. Am. Chem. Soc. 2011, 133, 1466. (d) Sun, K.; Li, Y.; Xiong, T.; Zhang,
J.; Zhang, Q. J. Am. Chem. Soc. 2011, 133, 1694. (e) Yoo, E. J.; Ma, S.;
Mei, T.-S.; Chan, K. S. L.; Yu, J.-Q. J. Am. Chem. Soc. 2011, 133, 7652. (f)
Ng, K.-H.; Zhou, Z.; Yu, W.-Y. Org. Lett. 2011, 14, 272. (g) Grohmann,
C.; Wang, H.; Glorius, F. Org. Lett. 2012, 14, 656.
a Conditions: 1a (1 equiv), anisole (10 equiv), ArI, AcOOH (2.2
equiv), trifluoroacetic acid (5 equiv) in solvent (0.2 M). b Isolated yields.
c Ratio measured by 1H NMR d Anisole (2 equiv) was used. e Reaction
conducted at 0 °C. f CF3CO2H used (2.5 equiv). g AcOOH used (3 equiv).
h Without CF3CO2H. Bz = benzoyl group, DCE = 1,2 dichloroethane,
nd = not determined.
cations stabilized by a heteroatom could provide an
access to cross-amination.10,11 The stabilized nitrenium
ions could be obtained under catalytic conditions using
aryliodide as catalyst. The reactive iodine(III) species
would be generated by in situ oxidation of aryl iodide
with peracetic acid.12,13 Herein, we describe the realiza-
tion of CÀH bond functionalization of arenes under
organocatalytic conditions.
We began our studies using N-methoxybenzamide (1a)
as amination reagent for the functionalization of anisole
(Table 1). A variety of aryl iodides were screened in
presence of peracetic and trifluoroacetic acid in order to
obtain the desired product (2a) in good yield and regio-
selectivity (Table 1, entries 1À4). The application of sub-
stoichiometric amounts of iodobenzene provided the tar-
get product in 62% yield with the major ortho regioisomer
over the corresponding para regioisomer in 5:1 ratio
(Table 1, entry 1). Electron rich 4-iodotoluene provided a
slightly better yield compared to iodobenzene, whereas
(7) For reviews on iodine (III), see: (a) Ochiai, M. Chem. Rec. 2007, 7,
12. (b) Zhdankin, V. V. ARKIVOC 2009, No. i, 1. (c) Uyanik, M.;
Ishihara, K. Chem. Commun. 2009, 2086. (d) Tohma, H.; Kita, Y. Adv.
Synth. Catal. 2004, 346, 111. (e) Dohi, T.; Ito, M.; Yamaoka, N.;
Morimoto, K.; Fujioka, H.; Kita, Y. Tetrahedron 2009, 65, 10797. (f)
Wirth, T. Angew. Chem., Int. Ed. 2005, 44, 3656. (g) Brand, J. P.;
ꢀ
Gonzalez, D. F.; Nicolai, S.; Waser, J. Chem. Commun. 2011, 47, 102.
(h) Silva, L. F., Jr.; Olofsson, B. Nat. Prod. Rep. 2011, 28, 1722. (i)
Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299. (j) Quideau, S.;
Pouysegu, L.; Deffieux, D. Synlett 2008, 467. (k) Ciufolini, M. A.;
Braun, N. A.; Canesi, S.; Ousmer, M.; Chang, J.; Chai, D. Synthesis
2007, 3759.
(8) (a) Kim, H. J.; Kim, J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc.
2011, 133, 16382. (b) Kantak, A. A.; Potavathri, S.; Barham, R. A.;
Romano, K. M.; DeBoef, B. L. J. Am. Chem. Soc. 2011, 133, 19960.
(9) For selected application of iodine (III) in formation of CÀN
bonds, see: (a) Dohi, T.; Maruyama, A.; Minamitsuji, Y.; Takenaga, N.;
Kita, Y. Chem. Commun. 2007, 1224. (b) Farid, U.; Wirth, T. Angew.
Chem., Int. Ed. 2012, 51, 3462. (c) Wardrop, D. J.; Bowen, E. G.;
Forslund, R. E.; Sussman, A. D.; Weerasekera, S. L. J. Am. Chem. Soc.
2010, 132, 1188. (d) Lovick, H. M.; Michael, F. E. J. Am. Chem. Soc.
(11) For selected reports on transfomations of stabilized nitrenium
ions, see: (a) Wardrop, D. J.; Bowen, E. G. Org. Lett. 2011, 13, 2376. (b)
Bowen, E. G.; Wardrop, D. J. Org. Lett. 2010, 12, 5330. (c) Murata, K.;
Tsukamoto, M.; Sakamoto, T.; Saito, S.; Kikugawa, Y. Synthesis 2008,
32. (d) Nagashima, A.; Sakamoto, T.; Kikugawa, Y. Heterocycles 2007,
74, 273. (e) Kikugawa, Y.; Nagashima, A.; Sakamoto, T.; Miyazawa, E.;
Shiiya, M. J. Org. Chem. 2003, 68, 6739. (f) Wardrop, D. J.; Basak, A.
Org. Lett. 2001, 3, 1053. (g) Kikugawa, Y.; Shimada, M.; Matsumoto,
K. Heterocycles 1994, 37, 293. (h) Kikugawa, Y.; Kawase, M. Chem.
Lett. 1990, 581. (i) Kikugawa, Y.; Kawase, M. J. Am. Chem. Soc. 1984,
106, 5728. (j) Glover, S. A.; Goosen, A.; McCleland, C. W.; Schoonraad,
J. L. J. Chem. Soc., Perkin Trans. 1 1984, 2255. (k) Wardrop, D. J.;
Bowen, E. G.; Forslund, R. E.; Sussman, A. D.; Weerasekera, S. L.
J. Am. Chem. Soc. 2010, 132, 1188. (l) Krasnova, L. B.; Hili, R. M.;
Chernoloz, O. V.; Yudin, A. K. ARKIVOC 2005, No. iv, 26. (m)
Zibinsky, M.; Stewart, T.; Surya Prakash, G. K.; Kuznetsov, M. A.
Eur. J. Org. Chem. 2009, 21, 3635.
~
2010, 132, 1249. (e) Souto, J. A.; Zian, D.; Muniz, K. J. Am. Chem. Soc.
€
ꢀ
2012, 134, 7242. (f) Roben, C.; Souto, J. A.; Gonzalez, Y.; Lishchynskyi,
~
A.; Muniz, K. Angew. Chem., Int. Ed. 2011, 50, 9478. (g) Yoshimura, A.;
Middleton, K. R.; Zhu, C.; Nemykin, V. N.; Zhdankin, V. V. Angew.
Chem., Int. Ed. 2012, 51, 8059.
(10) For reviews on nitrenium ions, see: (a) Kikugawa, Y. Hetero-
cycles 2009, 78, 571. (b) Borodkin, G. I.; Shubin, V. G. Russ. J. Org.
Chem. 2005, 41, 473. (c) Novak, M.; Rajagopal, S. Adv. Phys. Org.
Chem. 2001, 36, 167.
B
Org. Lett., Vol. XX, No. XX, XXXX