Tetrahedron Lett., 2011, 52, 4779; (d) R. N. Dhital, A. Murugadoss
and H. Sakurai, Chem.–Asian J., 2012, 7, 55.
3 (a) C. Gonzalez-Arellano, A. Corma, M. Iglesias and F. Sanchez,
J. Catal., 2006, 238, 497; (b) J. Han, Y. Liu and R. Guo, J. Am.
Chem. Soc., 2009, 131, 2060.
4 (a) C. Gonzalez-Arellano, A. Abad, A. Corma, H. Garcia, M. Iglesias
and F. Sanchez, Angew. Chem., Int. Ed., 2007, 46, 1536; (b) P. Li,
L. Wang, M. Wang and F. You, Eur. J. Org. Chem., 2008, 5946;
(c) R. O. M. A. de Souza, M. S. Bittar, L. V. P. Mendes, C. M. F. da
Silva, V. T. da Silva and O. A. C. Antunes, Synlett, 2008, 1777;
(d) V. K. Kanuru, G. Kyriakou, S. K. Beaumont, A. C.
Papageorgiou, D. J. Watson and R. M. Lambert, J. Am. Chem.
Soc., 2010, 132, 8081; (e) S. K. Beaumont, G. Kyriakou and
R. M. Lambert, J. Am. Chem. Soc., 2010, 132, 12246;
(f) G. Kyriakou, S. K. Beaumont, S. M. Humphrey, C. Antonetti
and R. M. Lambert, ChemCatChem, 2010, 2, 1444.
Scheme 1 Postulated mechanism regarding the silylative protection
or reduction of alcohols by 1,2-disilanes, catalyzed by Au/TiO2.
form a silyl-protected alcohol or silanol, respectively, and silyl
Au hydrides (II). R3SiAuH18 may either reversibly form a
hydrosilane (seen under our reaction conditions), or protect an
additional molecule of alcohol in a dehydrogenative manner.
The above presented rationalization has some similarities to
the proposed mechanism in the Pd-catalyzed alcoholysis of
hexamethyldisilane, where palladium hydrides were invoked.12,19
The role of the support, apart from stabilizing the catalytic sites,
is not profound. We postulate that the differences in the reaction
rates among TiO2, Al2O3 and ZnO might reflect their affinity16g
to the substrates. It is likely that disilane activation by Au
nanoparticles is driven by ionic gold clusters20 bearing a cationic
Au(I) catalytic site. Recently it was shown that although mono-
nuclear gold(I) complexes are unreactive in Sonogashira cross
coupling reactions, trinuclear cationic gold clusters are highly
active.21 The nature of the active species in processes catalyzed by
Au nanoparticles is obscure, thus we emphasize that our
proposed mechanism is just a reasonable working hypothesis.
Also, as we also observed that in the case of tert-benzylic
alcohols, their trimethylsilyl ethers are not direct precursors of
the alkanes,22 we propose a rational mechanism shown in
Scheme 1 (bottom part), in which the proton of the alcohol
indirectly becomes a reducing hydride. The participation of
intermediate II cannot be excluded.
5 T. Lauterbach, M. Livendahl, A. Rosellon, P. Espinet and
A. M. Echavarren, Org. Lett., 2010, 12, 3006.
6 A. Corma, R. Juarez, M. Boronat, F. Sanchez, M. Iglesias and
H. Garcia, Chem. Commun., 2011, 47, 1446.
7 (a) P. Gualco, S. Ladeira, K. Miqueu, A. Amgoune and D. Bourissou,
Angew. Chem., Int. Ed., 2011, 50, 8320; (b) M. Wilfling and
K. W. Klinkhammer, Angew. Chem., Int. Ed., 2010, 49, 3219.
8 I. Beletskaya and C. Moberg, Chem. Rev., 2006, 106, 2320.
9 (a) C. Raptis, H. Garcia and M. Stratakis, Angew. Chem., Int. Ed.,
2009, 48, 3133; (b) C. Efe, I. N. Lykakis and M. Stratakis, Chem.
Commun., 2011, 47, 803; (c) C. Gryparis, C. Efe, C. Raptis,
I. N. Lykakis and M. Stratakis, Org. Lett., 2012, 14, 2956;
(d) M. Stratakis and H. Garcia, Chem. Rev., 2012, 112, 4469.
10 I. N. Lykakis, A. Psyllaki and M. Stratakis, J. Am. Chem. Soc.,
2011, 133, 10426.
11 Au/TiO2, Au/Al2O3, Au/ZnO (1 wt% in Au) are commercially
available, and have an average gold crystallite size of B2–3 nm.
12 E. Shirakawa, K. Hironaka, H. Otsuda and T. Hayashi, Chem.
Commun., 2006, 3927.
13 Typical recent examples: (a) S. T. Kadam and S. S. Kim, Green
Chem., 2010, 12, 94; (b) S. Gharaati, M. Moghadam,
S. Tangestaninejad, V. Mirkhani and I. Mohammadpoor-Baltork,
Polyhedron, 2012, 35, 87; (c) M. Jereb, Tetrahedron, 2012, 68, 3861.
14 Y. Tanabe, H. Okumura, A. Maeda and M. Murakami, Tetra-
hedron Lett., 1994, 35, 8413.
15 For the general procedure of the silylative protection of alcohols
with hexamethyldisilane see the ESIw.
16 (a) H. Ito, K. Takagi, T. Miyahara and M. Sawamura, Org. Lett.,
2005, 7, 3001; (b) P. Raffa, C. Evangelisti, G. Vitulli and
P. Salvadori, Tetrahedron Lett., 2008, 49, 3221; (c) S. Labouille,
A. Escalle-Lewis, Y. Jean, N. Mezailles and P. Le Floch,
Chem.–Eur. J., 2011, 17, 2256; (d) T. Mitsudome, A. Noujima,
T. Mizugaki, K. Jitsukawa and K. Kaneda, Chem. Commun.,
2009, 5302; (e) N. Asao, Y. Ishikawa, N. Hatakeyama,
M. Menggenbateer, Y. Yamamoto, M. Chen, W. Zhang and
A. Inoue, Angew. Chem., Int. Ed., 2010, 49, 10093; (f) J. John,
E. Gravel, A. Hagege, H. Li, T. Gacoin and E. Doris, Angew.
Chem., Int. Ed., 2011, 50, 7533; (g) W. Li, A. Wang, X. Yang,
Y. Huang and T. Zhao, Chem. Commun., 2012, 48, 9183.
In conclusion, we presented herein the first general example of
a palladium resembling, Au-catalyzed activation of 1,2-disilanes,
towards hydrolysis and alcoholysis. The Au/TiO2-catalyzed
alcoholysis of hexamethyldisilane is a simple, atom economical
and clean procedure for the synthesis of trimethylsilyl protected
alcohols. The method is more effective as compared to a known
homogeneous Pd-catalyzed protocol in terms of mildness and
catalyst loading. tert-Benzylic alcohols are primarily reduced by
hexamethyldisilane into the corresponding alkanes, an unpre-
cedented reaction pathway.
17 After this manuscript had been submitted
a stoichiometric
Au-mediated oxygen insertion into a Si–Si bond via a Au(I)/
Au(III) redox sequence was reported, using H2O or O2 as oxidants:
P. Gualco, S. Ladeira, K. Miqueu, A. Amgoune and D. Bourissou,
Organometallics, 2012, 31, 6001. In our work, hydrolysis readily
takes place even under strict inert atmosphere conditions, which
implies that the oxidant is water.
This work was supported by the project ‘‘IRAKLEITOS
II - University of Crete’’ of the Operational Programme for
Education and Lifelong Learning 2007–2013.
18 A. Psyllaki, I. N. Lykakis and M. Stratakis, Tetrahedron, 2012,
68, 8724.
19 (a) E. Shirakawa, H. Otsuka and T. Hayashi, Chem. Commun.,
2005, 5885; (b) H. Otsuka, E. Shirakawa and T. Hayashi, Chem.
Commun., 2007, 1819.
20 (a) J. C. Fierro-Gonzaleza and B. C. Gates, Chem. Soc. Rev., 2008,
37, 2127; (b) ref. 9d.
21 P. S. D. Robinson, G. N. Khairallah, G. da Silva, H. Lioe and
R. A. J. O’Hair, Angew. Chem., Int. Ed., 2012, 51, 3812.
22 The TMS-ethers of tert-benzyl alcohols (e.g.12b) do not form the
corresponding alkanes upon treatment with excess of hexamethyl-
disilane in the presence of Au/TiO2 even at reflux.
Notes and references
1 (a) A. S. K. Hashmi and G. J. Hutchings, Angew. Chem., Int. Ed.,
2006, 45, 7896; (b) A. Furstner and P. W. Davies, Angew. Chem.,
Int. Ed., 2007, 46, 3410; (c) A. M. Echavarren and E. Jimenez-
Nunez, Chem. Rev., 2008, 108, 3326; (d) N. D. Shapiro and
F. D. Toste, Synlett, 2010, 675.
2 (a) S. Carrettin, J. Guzman and A. Corma, Angew. Chem., Int. Ed.,
2005, 44, 2242; (b) A. Primo and F. Quignard, Chem. Commun.,
2010, 46, 5593; (c) T. Matsuda, T. Asai, S. Shiose and K. Kato,
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 10751–10753 10753