L.-L. Yang et al. / European Journal of Medicinal Chemistry 56 (2012) 30e38
37
140.4, 128.5, 128.3, 126.6, 125.8, 112.5, 111.2, 108.6, 100.4, 48.5,
References
23.1 ppm.
[1] U. Knippschild, A. Gocht, S. Wolff, N. Huber, J. Lohler, M. Stoter, The casein
kinase 1 family: participation in multiple cellular processes in eukaryotes, Cell.
Signal. 17 (2005) 675e689.
[2] O. Marin, V.H. Bustos, L. Cesaro, F. Meggio, M.A. Pagano, M. Antonelli,
C.C. Allende, L.A. Pinna, J.E. Allende, A noncanonical sequence phosphorylated
by casein kinase 1 in beta-catenin may play a role in casein kinase 1 targeting
of important signaling proteins, Proc. Natl. Acad. Sci. U. S. A. 100 (2003)
10193e10200.
[3] J.K. Cheong, D.M. Virshup, Casein kinase 1: complexity in the family, Int. J.
Biochem. Cell. Biol. 43 (2011) 465e469.
[4] D.P. Hanger, H.L. Byers, S. Wray, K.Y. Leung, M.J. Saxton, A. Seereeram,
C.H. Reynolds, M.A. Ward, B.H. Anderton, Novel phosphorylation sites in tau
from Alzheimer brain support a role for casein kinase 1 in disease patho-
genesis, J. Biol. Chem. 282 (2007) 23645e23654.
[5] D.I. Perez, C. Gil, A. Martinez, Protein kinases CK1 and CK2 as new targets for
neurodegenerative diseases, Med. Res. Rev. 31 (2011) 924e954.
[6] N.P. Shanware, J.A. Hutchinson, S.H. Kim, L. Zhan, M.J. Bowler, R.S. Tibbetts,
Casein kinase 1-dependent phosphorylation of familial advanced sleep phase
syndrome-associated residues controls PERIOD 2 stability, J. Biol. Chem. 286
(2011) 12766e12774.
4.3.10. (R)-1-(4-(3-amino-1H-pyrazolo[3,4-d]pyrimidin-6-
ylamino)phenyl)-3-(1-phenylethyl) urea (6)
The title compound was synthesized from (R)-1-(4-
aminophenyl)-3-(1-phenylethyl) urea (15) (1.1 g, 4.4 mmol) and
(E)-N0-(6-chloro-1H-pyrazolo[3,4-d]pyrimidin-3-yl)
-N,N-dime-
thylformimidamide (12) (1.0 g, 4.4 mmol) using a procedure similar
to that of 2. Yield: 79%; Purity: 98%; LC-MS m/z: 389.2 [M þ H ]þ. 1H
NMR (400 MHz, DMSO-d6): d11.68 (s, 1H), 9.38 (s, 1H), 8.74 (s, 1H),
8.23 (s, 1H), 7.63 (d, J ¼ 8.8 Hz, 2H), 7.34 (d, J ¼ 4.0 Hz, 4H),
7.27e7.23 (m, 3H), 6.54 (d, J ¼ 8.0 Hz, 1H), 5.69 (s, 2H), 4.83e4.80
(m, 1H), 1.37 (d, J ¼ 6.8 Hz, 3H)ppm.
4.3.11. 1-(3-(3-Amino-1H-pyrazolo[3,4-d]pyrimidin-6-ylamino)
phenyl)-3-(5-tert-butyl-1H-pyrazol-3-yl) urea (4)
[7] S. Luz, P. Kongsuphol, A.I. Mendes, F. Romeiras, M. Sousa, R. Schreiber,
P. Matos, P. Jordan, A. Mehta, M.D. Amaral, K. Kunzelmann, C.M. Farinha,
Contribution of casein kinase 2 and spleen tyrosine kinase to CFTR trafficking
and protein kinase A-induced activity, Mol. Cell. Biol. 31 (2011) 4392e4404.
[8] U. Knippschild, S. Wolff, G. Giamas, C. Brockschmidt, M. Wittau, P.U. Wurl,
T. Eismann, M. Stoter, The role of the casein kinase 1 (CK1) family in different
signaling pathways linked to cancer development, Onkologie 28 (2005) 508e514.
[9] P. Gribbon, A. Sewing, Fluorescence readouts in HTS: no gain without pain?
Drug Discov. Today 8 (2003) 1035e1043.
[10] D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual
screening for drug discovery: methods and applications, Nat. Rev. Drug Dis-
cov. 3 (2004) 935e949.
[11] P.D. Lyne, Structure-based virtual screening: an overview, Drug Discov. Today
7 (2002) 1047e1055.
The title compound was synthesized from 1-(3-aminophenyl)-
3-(5-tert-butyl -1H-pyrazol-3-yl)urea (15) (1.2 g, 4.4 mmol) and
(E)-N0-(6-chloro-1H-pyrazolo[3,4-d]
pyrimidin-3-yl)-N,N-dime-
thylformimidamide (12) (1.0 g, 4.4 mmol) using a procedure similar
to that of 2. Yield: 79%, Purity: 98%; LC-MS m/z: 407.2 [M þ H ]þ. 1H
NMR (400 MHz, DMSO-d6): d11.98 (s, 1H), 11.80 (s, 1H), 9.65 (s,
1H),9.15 (b, 1H), 9.00 (s, 1H), 8.89 (s, 1H), 7.65 (s, 1H), 7.52 (d,
J ¼ 7.2 Hz, 1H), 7.21e7.15 (m, 2H), 5.80 (s, 2H),1.41 (s, 9H)ppm. 13C
NMR (100 MHz, DMSO-d6): d 158.3, 155.3, 152.9, 152.4, 152.0, 148.6,
147.4, 140.9, 139.6, 128.6, 113.3, 111.9, 109.4, 100.4, 90.6, 30.6,
29.9 ppm.
[12] G. Klebe, Virtual ligand screening: strategies, perspectives and limitations,
Drug Discov. Today 11 (2006) 580e594.
[13] H. Eckert, J. Bajorath, Molecular similarity analysis in virtual screening:
foundations, limitations and novel approaches, Drug Discov. Today 12 (2007)
225e233.
4.4. In vitro kinase inhibitory assay
[14] P. Gedeck, R.A. Lewis, Exploiting QSAR models in lead optimization, Curr.
Opin. Drug Discov. Dev. 11 (2008) 569e575.
[15] N. Brown, R.A. Lewis, Exploiting QSAR methods in lead optimization, Curr.
Opin. Drug Discov. Dev. 9 (2006) 419e424.
[16] P.R. Murumkar, V.P. Zambre, M.R. Yadav, Development of predictive phar-
macophore model for in silico screening, and 3D QSAR CoMFA and CoMSIA
studies for lead optimization, for designing of potent tumor necrosis factor
alpha converting enzyme inhibitors, J. Comput. Aided. Mol. Des. 24 (2010)
143e156.
All the kinase inhibitory assays were carried out through the
KinaseProfiler service provided by Millipore [35]. CK1 was incu-
bated with 200
MgAcetate and [
pmol, concentration as required). The buffer composition includes
20 mM MOPS, 1 mM EDTA, 0.01% Brij-35, 5% Glycerol, 0.1%
m
M specific substrate KRRRALS(p)VASLPGL, 10 mM
g-
33P-ATP] (specific activity approx. 500 cpm/
b
-
[17] S.Y. Yang, Pharmacophore modeling and applications in drug discovery:
challenges and recent advances, Drug Discov. Today 15 (2010) 444e450.
[18] G.B. Li, L.L. Yang, S. Feng, J.P. Zhou, Q. Huang, H.Z. Xie, L.L. Li, S.Y. Yang,
mercaptoethanol, and 1 mg/ml BSA. The reaction was initiated by
the addition of the MgATP mix. After incubation for 40 min at room
temperature, the reaction was stopped by the addition of 3%
Discovery of novel mGluR1 antagonists:
a multistep virtual screening
phosphoric acid solution. 10 mL of the reaction was then spotted
approach based on an SVM model and a pharmacophore hypothesis signifi-
cantly increases the hit rate and enrichment factor, Bioorg. Med. Chem. Lett.
21 (2011) 1736e1740.
onto a P30 filtermat and washed three times for 5 min in 75 mM
phosphoric and once in methanol prior to drying and scintillation
counting. IC50 values of compounds were determined from
doseeresponse curves obtained from the assays at 10 different
concentrations of each compound. All the assays were repeated
twice and the mean values of activity were calculated.
[19] S. Thangapandian, S. John, S. Sakkiah, K.W. Lee, Potential virtual lead identi-
fication in the discovery of renin inhibitors: application of ligand and
structure-based pharmacophore modeling approaches, Eur. J. Med. Chem. 46
(2011) 2469e2476.
[20] P. Purushottamachar, J.B. Patel, L.K. Gediya, O.O. Clement, V.C. Njar, First
chemical feature-based pharmacophore modeling of potent retinoidal retinoic
acid metabolism blocking agents (RAMBAs): identification of novel RAMBA
scaffolds, Eur. J. Med. Chem. 47 (2012) 412e423.
[21] J. Zou, H.Z. Xie, S.Y. Yang, J.J. Chen, J.X. Ren, Y.Q. Wei, Towards more accurate
pharmacophore modeling: multicomplex-based comprehensive pharmaco-
phore map and most-frequent-feature pharmacophore model of CDK2, J. Mol.
Graph. Model. 27 (2008) 430e438.
[22] R.M. Xu, G. Carmel, J. Kuret, X. Cheng, Structural basis for selectivity of the
isoquinoline sulfonamide family of protein kinase inhibitors, Proc. Natl. Acad.
Sci. U. S. A. 93 (1996) 6308e6313.
[23] N. Mashhoon, A.J. DeMaggio, V. Tereshko, S.C. Bergmeier, M. Egli,
M.F. Hoekstra, J. Kuret, Crystal structure of a conformation-selective casein
kinase-1 inhibitor, J. Biol. Chem. 275 (2000) 20052e20060.
Acknowledgment
This work was supported by the National Natural Science
Foundation of China (81172987), SRFDP (20100181110025),
and partly by the 863 Hi-Tech Program (2012AA020301,
2012AA020308).
[24] F. Lovering, S. Kirincich, W. Wang, K. Combs, L. Resnick, J.E. Sabalski, J. Butera,
J. Liu, K. Parris, J.B. Telliez, Identification and SAR of squarate inhibitors of
mitogen activated protein kinase-activated protein kinase 2 (MK-2), Bioorg.
Med. Chem. 17 (2009) 3342e3351.
Appendix A. Supplementary material
[25] G. Rena, J. Bain, M. Elliott, P. Cohen, D4476, a cell-permeant inhibitor of CK1,
suppresses the site-specific phosphorylation and nuclear exclusion of
FOXO1a, EMBO Rep. 5 (2004) 60e65.
[26] N. Oumata, K. Bettayeb, Y. Ferandin, L. Demange, A. Lopez-Giral, M.L. Goddard,
V. Myrianthopoulos, E. Mikros, M. Flajolet, P. Greengard, L. Meijer, H. Galons,
Supplementary data associated with this article can be found in
007. These data include MOL files and InChiKeys of the most
important compounds described in this article.