ORGANIC
LETTERS
2012
Vol. 14, No. 22
5788–5791
InCl3/Me3SiCl-Catalyzed Direct
Michael Addition of Enol Acetates to
r,β-Unsaturated Ketones
Yoshiharu Onishi, Yuki Yoneda, Yoshihiro Nishimoto, Makoto Yasuda, and
Akio Baba*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University,
2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
Received October 19, 2012
ABSTRACT
The direct Michael addition of enol acetates to R,β-unsaturated ketones was achieved using a combination of Lewis acid catalysts, InCl3 and
Me3SiCl, which furnished stable enol-form products that could be further transformed into functionalized 1,5-diketones by reactions with various
electrophiles.
Michael addition of metal enolates to R,β-unsaturated
carbonyl compounds is an efficient route to 1,5-dicarbonyl
compounds.1À3 These compounds are obtained after the
post-treatment hydrolysis of unstable metal enol-forms of
Michael adducts (eq 1, Scheme 1). Despite high potential
as a nucleophile, the isolation and utilization of enol-form
products have not been sufficiently developed because of
instability. Silyl enolate products as Michael adducts have
been isolated only by careful treatment3a,4 and are utilized
in total synthesis.5 Enol acetates are metal-free and stable
nucleophiles, which makes them potential reagents, but
their direct utilization has been limited to some aldol
reactions and oxidative couplings.6,7 Recently, we have
succeeded in the displacement of metal enolates to enol
acetates in coupling reactions with either alcohols or their
derivatives.8 Herein, we report Michael additions using
enol acetates instead of metal enolates (eq 2, Scheme 1).
A catalytic combination of the Lewis acids InCl3 and
Me3SiCl, which specifically activated R,β-unsaturated ketones,
(1) For representative reviews, see: (a) Bergmann, E. D.; Ginsburg,
D.; Pappo, R. In Organic Reactions; Adams, R., Eds.; Wiley: New York,
1959; Vol. 10, pp 179À561. (b) House, H. O. In Modern Synthetic
Reactions, 2nd ed.; W. A. Benjamin: Menlo Park, 1972; pp 595À623.
(2) For pioneering work for the MukaiyamaÀMichael reaction, see:
(a) Narasaka, K.; Soai, K.; Mukaiyama, T. Chem. Lett. 1974, 1223–
1224. (b) Narasaka, K.; Soai, K.; Aikawa, K.; Mukaiyama, T. Bull.
Chem. Soc. Jpn. 1976, 49, 779–783.
(3) Selected works of the MukaiyamaÀMichael reaction: (a) Wada,
M.; Takeichi, E.; Matsumoto, T. Bull. Chem. Soc. Jpn. 1991, 64, 990–
994. (b) Kobayashi, S.; Hachiya, I.; Ishitani, H.; Araki, M. Synlett 1993,
472–474. (c) Loh, T.-P.; Wei, L.-L. Tetrahedron 1998, 54, 7615–7624. (d)
Marx, A.; Yamamoto, H. Angew. Chem., Int. Ed. 2000, 39, 178–181. (e)
Miura, K.; Nakagawa, T.; Hosomi, A. Synlett 2003, 13, 2068–2070.
(4) (a) Bunce, R. A.; Schlecht, M. F.; Dauben, W. G.; Heathcock,
C. H. Tetrahedron Lett. 1983, 24, 4943–4946. (b) Kobayashi, S.;
Murakami, M.; Mukaiyama, T. Chem. Lett. 1986, 953–956. (c)
Inokuchi, T.; Kurokawa, Y.; Kusumoto, M.; Tanigawa, S.; Takagishi,
S.; Torii, S. Bull. Chem. Soc. Jpn. 1989, 62, 3739–3741. (d) Grieco, P. A.;
Cooke, R. J.; Henry, K. J.; VanderRoest, J. M. Tetrahedron Lett. 1991,
32, 4665–4668. (e) Berl, V.; Helmchen, G.; Preston, S. Tetrahedron Lett.
1994, 35, 233–236.
ꢀ
(5) Selected works: (a) Dratch, S.; Charnikhova, T.; Saraber, F. C.;
Jansen, B. J. M.; de Groot, A. Tetrahedron 2003, 59, 4287–4295. (b)
Saraber, F. C.; Baranovsky, A.; Jansen, B. J. M.; Posthumus, M. A.; de
Groot, A. Tetrahedron 2006, 62, 1726–1742. (c) Jung, M. E.; Chang, J. J.
Org. Lett. 2010, 12, 2962–2965.
ꢀ
(6) (a) Mukaiyama, T.; Izawa, T.; Saigo, K. Chem. Lett. 1974, 323–
326. (b) Masuyama, Y.; Kobayashi, Y.; Yanagi, R.; Kurusu, Y. Chem.
Lett. 1992, 2039–2042. (c) Yanagisawa, M.; Shimamura, T.; Iida, D.;
Matsuo, J.; Mukaiyama, T. Chem. Pharm. Bull. 2000, 48, 1838–1840.
(7) (a) Song, C.-X.; Cai, G.-X.; Farrell, T. R.; Jiang, Z.-P.; Li, H.;
Gan, L.-B.; Shi, Z.-J. Chem. Commun. 2009, 6002–6004. (b) Liu, L.;
Floreancig, P. E. Angew. Chem., Int. Ed. 2010, 49, 3069–3072.
(8) (a) Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Angew.
Chem., Int. Ed. 2009, 48, 9131–9134. (b) Onishi, Y.; Nishimoto, Y.;
Yasuda, M.; Baba, A. Org. Lett. 2011, 13, 2762–2765. (c) Onishi, Y.;
Nishimoto, Y.; Yasuda, M.; Baba, A. Chem. Lett. 2011, 40, 1223–1225.
(9) “Indirect” Michael reactions, in which tin enolates derived from
enol esters were employed as enol nucleophiles, have been reported; see:
(a) Hashimoto, Y.; Sugumi, H.; Okauchi, T.; Mukaiyama, T. Chem.
Lett. 1987, 1695–1698. (b) Yanagisawa, A.; Izumi, Y.; Arai, T. Chem.
Lett. 2008, 37, 1092–1093.
r
10.1021/ol302888k
Published on Web 11/06/2012
2012 American Chemical Society