4
8.12 (s, 1H, Himine), 7.75 (d, J = 2.52 Hz, 1H, Ar), 7.67 (dd,
[RhCl(COD)]2 was then added and the solution was stirred at
room temperature for 24 hours.
3J = 8.92 Hz, J = 2.53 Hz, 1H, Ar), 6.86 (d, J = 8.94 Hz, 1H,
Ar), 4.40 (br s, 2H, CHCOD), 3.88 (br s, 2H, CHCOD), 3.12
(t, 3J = 7.48 Hz, 2H, –NCH2), 2.41 (br, 4H, CH2COD), 1.90
(m, 4H, CH2COD), 1.68 (sext, 3J = 7.42 Hz, 2H, CH2propyl), 0.84
3
3
Acknowledgements
3
(t, J = 7.34 Hz, 3H, CH3propyl). δC (75 MHz, MeOD, 25 °C)
We would like to thank the University of Cape Town (UCT), the
National Research Foundation and Department of Science and
Technology of South Africa (NRF-DST Centre of Excellence in
Catalysis- c*change), UCT Faculty of Science and the Oppen-
heimer Memorial Trust for financial support. A generous
donation of rhodium trichloride from Anglo American Platinum
Limited is gratefully acknowledged.
(ppm)=165.7, 164.6, 132.5, 130.7, 130.4, 119.6, 117.8, 84.2
(br), 71.0 (br d, J = 13 Hz), 60.0, 30.5, 27.8, 26.1, 9.3. Analysis
(calculated for C18H23NNaO4RhS): C, 45.48; H, 4.88; N, 2.95;
S, 6.75. Found: C, 45.57; H, 4.50; N, 3.18; S, 6.82%. ESI-MS
(m/z) = 498.00 ([M + Na]+, 84%).
Synthesis of 3-tbutyl-5-sulfonato propylsalicylaldimine
rhodium(I)1,5-cyclooctadiene complex (8). Ligand (4) (0.044 g,
0.14 mmol), was dissolved in 10 cm3 ethanol–DCM (1 : 1
volume) mixture. KOH (0.25 cm3 of 1 M ethanol solution) was
added and the reaction was stirred at room temperature for
30 minutes. [Rh(COD)Cl]2 (0.035 g, 0.07 mmol) was added and
the mixture stirred for 90 minutes. The reaction mixture was
filtered by gravity and the solvent was removed to yield a yellow
solid stuck to the sides of the round-bottomed flask. Diethyl
ether was added and the product scratched off the walls of the
flask, then filtered under vacuum. Yield of yellow solid (8)
(0.045 g, 61%). mp.: decomp without melting, onset occurs at
277 °C. FT-IR (νmax/cm−1, KBr): 1607s (CvN). δH (400 MHz,
DMSO-d6, 25 °C) (ppm) = 8.20 (d, J = 1.79 Hz, 1H, Himine),
7.53 (d, J = 2.32 Hz, 1H, Ar), 7.49 (d, J = 2.29 Hz, 1H, Ar),
4.62 (br s, 2H, CHCOD), 3.74 (br s, 2H, CHCOD), 3.09 (t, J =
7.59 Hz, 2H, –NCH2), 2.42 (br s, 4H, CH2COD), 1.86 (m, 4H,
CH2COD), 1.63 (sext., J = 7.56 Hz, 2H, CH2propyl), 1.29 (s, 9H,
CH3 butyl), 0.87 (t, J = 7.34 Hz, 3H, CH3propyl). δC (75 MHz,
DMSO-d6, 25 °C) (ppm)= 166.8, 164.0, 137.9, 134.1, 131.5,
128.8, 117.7, 83.0 (br), 71.4 (br), 60.0, 35.0, 29.9, 28.9, 27.2,
26.1, 11.5. Analysis (calculated for C22H31NNaO4RhS):
C, 49.72; H, 5.88; N, 2.64; S, 6.03. Found: C, 49.15; H, 5.53;
N, 2.22; S, 6.48%. ESI-MS (m/z) = 508.1 ([M − Na]+, 71%).
References
1 (a) H. Bricout, F. Hapiot, A. Ponchel, S. Tilloy and E. Monflier, Sustain-
ability, 2009, 1, 924; (b) E. G. Kunts, Chem. Technol., 1987, 17, 570;
(c) D. Evans, J. A. Osborn, F. H. Jardine and G. Wilkinson, Nature,
1965, 208, 1203; (d) D. J. Cole-Hamilton, R. P. Tooze, Catalyst
Separation Recovery and Recycling 1–8, Springer Printed in the
Netherlands, 2006, ch. 1; (e) D. J. Cole-Hamilton, Science, 2003, 299,
1702; (f) S. L. Desset, U. Hintermair, Z. Gong, C. C. Santini and
D. J. Cole-Hamilton, Top. Catal., 2010, 53, 963; (g) S. L. Desset,
S. W. Reader and D. J. Cole-Hamilton, Green Chem., 2009, 11, 630;
(h) S. L. Desset, D. J. Cole-Hamilton and D. F. Foster, Chem. Commun.,
2007, 1933.
2 (a) B. Cornils, Org. Process Rev. Dev., 1998, 2, 121; (b) E. Wiebus and
B. Cornils, Hydrocarbon Process, 1996, 66, 63; (c) B. Cornils,
W. A. Herrmann, M. Rasch and M. Beller, Angew. Chem., Int. Ed. Engl.,
1994, 33, 2144; (d) B. Cornils, C. D. Frohning and C. W. Kohlpaintner,
J. Mol. Catal. A, 1995, 104, 17; (e) B. Cornils, W. A. Herrmann and
R. W. Ecki, J. Mol. Catal. A: Chem., 1997, 116, 27; (f) P. W. N. M. van
Leeuwen, C. Claver, Rh-Catalyzed Hydroformylation, Kluwer Academic,
Dordrecht, 2000, p. 6; (g) B. Cornils, W. A. Herrmann and M. Rasch,
“Otto roelen, pioneer in industrial homogeneous catalysis”, Angew.
Chem., Int. Ed. Engl., 1994, 33, 2144.
4
4
3
3
t
3
3 (a) N. Pinault and D. W. Bruce, Coord. Chem. Rev., 2003, 241, 1;
(b) H. C. Kang, C. H. Mauldin, T. Cole, W. Sleigeir, K. Cann and
R. Pettit, J. Am. Chem. Soc., 1977, 99, 8323.
4 A. Robichaud and A. N. Ajjou, Tetrahedron Lett., 2006, 47, 3633.
5 M. R. Didgikar, S. S. Joshi, S. P. Gupte, M. M. Diwakar,
R. M. Deshpande and R. V. Chaudhari, J. Mol. Catal. A: Chem., 2011,
334, 20.
General procedure for the hydroformylation reactions
6 H. Syska, W. A. Herrmann and F. E. Kühn, J. Organomet. Chem., 2012,
703, 56.
Hydroformylation reactions were carried out in a 90 ml stainless
steel pipe reactor. The reactor was charged with toluene (5 ml)
and water (5 ml) (1 : 1), 1-octene (715 mg, 6.37 mmol),
n-decane as the internal standard (180 mg, 1.26 mmol) and
either of the Rh catalyst precursors (5 and 6)/[RhCl(COD)]2, or
(7 and 8) (2.87 × 10−3 mmol, substrate : Rh ratio = 2220 : 1).
The reactor was flushed three times with N2 (g) then with syngas
(CO : H2, 1 : 1 ratio) followed by pressurizing and heating to the
desired syngas pressure and temperature respectively. Samples
were taken every 2 hours and analyzed using gas chromato-
graphy (GC). The products were confirmed in relation to auth-
entic iso-octenes and aldehydes, alcohols and n-octane. For the
catalyst recycling experiments, the organic layer was decanted, a
fresh organic layer containing the substrate was introduced and
the hydroformylation procedure was repeated.
7 H. Türkmen, L. Pelit and B. Cetinkaya, J. Mol. Catal. A: Chem., 2011,
348, 88.
8 A. N. Ajjou and J.-L. Pinet, J. Mol. Catal. A: Chem., 2004, 214, 203.
9 D. Baskakov and W. A. Herrmann, J. Mol. Catal. A: Chem., 2008, 283,
166.
10 J. P. Gallivan, J. P. Jordan and R. H. Grubbs, Tetrahedron Lett., 2005, 46,
2577.
11 H. Gulyás, A. C. Bényei and J. Bakos, Inorg. Chim. Acta, 2004, 357,
3094.
12 K. V. Katti, H. Gali, C. J. Smith and D. E. Berning, Acc. Chem. Res.,
1999, 32, 9.
13 S. H. Hong and R. H. Grubbs, J. Am. Chem. Soc., 2006, 128, 3508.
14 T. V. RajanBabu, Y.-Y. Yan and S. Shin, J. Am. Chem. Soc., 2001, 123,
10207.
15 D. M. Lynn, B. Mohr and R. H. Grubbs, J. Am. Chem. Soc., 1998, 120,
1627.
16 D. E. Bergbreiter, Y.-S. Liu and P. L. Osburn, J. Am. Chem. Soc., 1998,
120, 4250.
17 C. McAuliffe, J. Phys. Chem., 1966, 70, 1267–1275.
18 R. A. Sheldon, Green Chem., 2005, 7, 267.
19 H. Azoui, K. Baczko, S. Cassel and C. Larpent, Green Chem., 2008, 10,
1197.
20 B. E. Hanson, H. Ding and C. W. Kohlpaintner, Catal. Today, 1998, 42,
421.
Catalyst generation. Prior to hydroformylation reactions, (5)/
[RhCl(COD)]2 and (6)/[RhCl(COD)]2 were generated by stirring
ligands (5 and 6) separately in distilled water (5 ml) in the pres-
ence of aqueous KOH for 2 hours. The appropriate amount of
21 D. Astruc and F. Chardac, Chem. Rev., 2001, 101, 2991.
13934 | Dalton Trans., 2012, 41, 13927–13935
This journal is © The Royal Society of Chemistry 2012