ORGANIC
LETTERS
2012
Vol. 14, No. 23
5884–5887
Asymmetric Iodolactonization Utilizing
Chiral Squaramides
Jørn E. Tungen, Jens M. J. Nolsøe, and Trond V. Hansen*
School of Pharmacy, Department of Pharmaceutical Chemistry, University of Oslo,
P.O. Box 1068 Blindern, N-0316 Oslo, Norway
Received October 11, 2012
ABSTRACT
Asymmetric iodolactonization of γ- and δ-unsaturated carboxylic acids has been explored in the presence of six different chiral organocatalysts
5À8. The catalyst 6b was found to facilitate the cyclization of 5-arylhex-5-enoic acids 1 to the corresponding iodolactones 2 with up to 96% ee. By
this protocol, unsaturated carboxylic acids are converted enantioselectively to synthetically useful δ-lactones in high yields using commercially
available NIS. Apparently, both hydrogen bonding and aryl/aryl interactions are important for efficient stereodifferentiation.
Halolactonization, the intramolecular cyclization that
ensues as proximally unsaturated acids react through an
incipient halonium ion, is a powerful synthetic trans-
formation.1 Approximately 60 years ago, Woodward and
Singh demonstrated its relevance in total synthesis by
staging halolactonization as a linchpin feature in the
synthesis of the natural product allo-patulin.2 During the
intervening time, several eminent examples have appeared
in the literature,3 and halolactonization is now a well-
established tool in total synthesis.4,5 Over the past 30 years,
development of asymmetric versions of halolactonization,
in terms of substrate controlled reactions, has been met
with considerable success.6 However, asymmetric versions
under reagent control, in particular catalytic processes,
have proven more difficult to realize.7 Although good
asymmetric induction can be achieved when chlorine or
bromine is involved,8 the catalytic enantioselective iodo-
lactonization has only recently been communicated.9
(1) Selected reviews concerning halolactonization: (a) Snyder, S. A.;
Treitler, D. S.; Brucks, A. P. Aldrichimica Acta 2011, 44, 27. (b) Tan,
C. K.; Zhou, L.; Yeung, Y.-Y. Synlett 2011, 1335. (c) Ranganathan, S.;
Muraleedharan, K. M.; Vaish, N. K.; Jayaraman, N. Tetrahedron 2004,
60, 5273. (d) Dowle, M. D.; Davies, D. I. Chem. Soc. Rev. 1979, 8, 171.
(2) Woodward, R. B.; Singh, G. J. Am. Chem. Soc. 1950, 72, 5351.
(3) (a) Corey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W.
J. Am. Chem. Soc. 1969, 91, 5675. (b) Danishefsky, S.; Schuda, P. F.;
Kitahara, T.; Etheredge, S. J. J. Am. Chem. Soc. 1977, 99, 6066. (c) Zhou,
Q.; Snider, B. B. Org. Lett. 2008, 10, 1401.
(4) Selected reviews concerning iodolactonization in natural product
synthesis: (a) Laya, M. S.; Banerjee, A. K.; Cabrera, E. V. Curr. Org.
Chem. 2009, 13, 720. (b) French, A. N.; Bissmire, S.; Wirth, T. Chem.
Soc. Rev. 2004, 33, 354.
(5) (a) Vik, A.; Hansen, T. V. Tetrahedron Lett. 2011, 52, 1060.
(b) Vik, A.; Hansen, T. V.; Holmeide, A. K.; Skattebøl, L. Tetrahedron
Lett. 2010, 51, 2852. (c) Langseter, A. M.; Skattebøl, L.; Stenstrøm, Y.
Tetrahedron Lett. 2012, 53, 940. (d) Holmeide, A. K.; Skattebøl, L.;
Sydnes, M. J. Chem. Soc., Perkin Trans. 1 2001, 1942. (e) Stivala, C. E.;
Gu, Z.; Smith, L. L.; Zakarian, A. Org. Lett. 2012, 14, 804. (f) Canham,
S. M.; France, D. J.; Overman, L. E. J. Org. Chem. 2012 10.1021/
jo300872y. (g) Snyder, S. A.; Wright, N. E.; Pflueger, J. J.; Breazzano, S. P.
Angew. Chem., Int. Ed. 2011, 50, 8629.
(6) (a) Takano, S.; Murakata, C.; Imamura, Y. Heterocycles 1981, 16,
1291. (b) Hart, D. J.; Huang, H.-C.; Krishnamurthy, R.; Schwartz, T.
J. Am. Chem. Soc. 1989, 111, 7507. (c) Fuji, K.; Node, M.; Naniwa, Y.;
Kawabata, T. Tetrahedron Lett. 1990, 31, 3175. (d) Yokomatsu, T.;
Iwasawa, H.; Shibuya, S. J. Chem. Soc., Chem. Commun. 1992, 728. (e)
Kitagawa, O.; Momose, S.; Fushimi, Y.; Taguchi, T. Tetrahedron Lett.
1999, 40, 8827.
(7) (a) Kitagawa, O.; Hanano, T.; Tanabe, K.; Shiro, M.; Taguchi, T.
J. Chem. Soc., Chem. Commun. 1992, 1005. (b) Grossman, R. B.; Trupp,
R. J. Can. J. Chem. 1998, 76, 1233. (c) Haas, J.; Piguel, S.; Wirth, T. Org.
Lett. 2002, 4, 297. (d) Haas, J.; Bissmire, S.; Wirth, T. Chem.;Eur. J.
2005, 11, 5777. (e) Garnier, J. M.; Robin, S.; Rousseau, G. Eur. J. Org.
Chem. 2007, 3281.
(8) (a) Whitehead, D. C.; Yousefi, R.; Jaganathan, A.; Borhan, B.
J. Am. Chem. Soc. 2010, 132, 3298. (b) Yousefi, R.; Whitehead, D. C.;
Mueller, J. M.; Staples, R. J.; Borhan, B. Org. Lett. 2011, 13, 608.
(c) Zhang, W.; Zheng, S.; Liu, N.; Werness, J. B.; Guzei, I. A.; Tang, W.
J. Am. Chem. Soc. 2010, 132, 3664. (d) Zhou, L.; Tan, C. K.; Jiang, X.;
Chen, F.; Yeung, Y.-Y. J. Am. Chem. Soc. 2010, 132, 15474. (e) Murai,
K.; Matsushita, T.; Nakamura, A.; Fukushima, S.; Shimura, M.;
Fujioka, H. Angew. Chem., Int. Ed. 2010, 49, 9174.
r
10.1021/ol302798g
Published on Web 11/13/2012
2012 American Chemical Society