10.1002/anie.202009209
Angewandte Chemie International Edition
COMMUNICATION
[1]
[2]
[3]
[4]
A. Veyrières, Carbohydrates Chem. Biol. 2000, 367–405.
C. H. Marzabadi, R. W. Franck, Tetrahedron 2000, 56, 8385–8417.
I. J. Wilk, J. Chem. Educ. 1957, 34, 463.
W. Kitching, H. A. Olszowy, G. M. Drew, W. Adcock, J. Org. Chem.
1982, 47, 5153–5156.
[5]
[6]
L. H. Sommer, E. Dorfman, G. M. Goldberg, F. C. Whitmore, J. Am.
Chem. Soc. 1946, 68, 488–489.
I. Fleming, R. Henning, D. C. Parker, H. E. Plaut, P. E. J.
Sanderson, J. Chem. Soc. Perkin Trans. 1 1995, 317–337.
G. R. Jones, Y. Landais, Tetrahedron 1996, 52, 7599–7662.
I. Fleming, R. Henning, H. Plaut, J. Chem. Soc. Chem. Commun.
1984, 29–31.
[7]
[8]
Scheme 4. Vinyl furanoside 25 was observed as the major product under some
glycosylation conditions. For the glycosylation reactions of 12 with 1,6-anhydro
donor 4b the following two catalysts were used; BF3·Et2O (0.6 equiv), 87 %
(1:7.3 α/β); TfOH (0.1 equiv), 75 % (1:13 α/β).
[9]
K. Tamao, N. Ishida, M. Kumada, J. Org. Chem. 1983, 48, 2120–
2122.
[10]
[11]
K. Tamao, N. Ishida, T. Tanaka, M. Kumada, Organometallics 1983,
2, 1694–1696.
T. Torigoe, T. Ohmura, M. Suginome, J. Org. Chem. 2017, 82,
2943–2956.
The mechanistic background for the formation of vinyl furanosides
was not investigated in-depth. Nevertheless, our observations
suggest that the β-cationic stabilization from the silyl-group results
in the electrophilic substitution of an unsaturated allylic
silane[5,41,42] through a two-step mechanism related to a 1,2-silyl
migration or 1,3-silyl rearrangement followed by anti-elimination,
not unlike a Peterson-olefination.[13,43,44] This would explain why
inversion of the 4-position was observed. It is noteworthy that the
formation of vinyl furanosides also was observed by Imperio et al.
during their synthesis of 6-boronic acid sugar derivatives.[45] The
similarity in side-product formation reveals a reduced stability of
polyols containing weaker electronegative elements, both in
terms of acid and base lability.
[12]
[13]
[14]
J. J. Pegram, C. B. Anderson, Carbohydr. Res. 1988, 184, 276–278.
V. Pedretti, A. Veyrières, P. Sinaÿ, Tetrahedron 1990, 46, 77–88.
V. Pedretti, J.-M. Mallet, P. Sinaÿ, Carbohydr. Res. 1993, 244, 247–
257.
[15]
P. Smid, F. J. M. Schipper, H. J. G. Broxterman, G. J. P. H. Boons,
G. A. van der Marel, J. H. van Boom, Recl. des Trav. Chim. des
Pays-Bas 1993, 112, 451–456.
[16]
[17]
[18]
[19]
[20]
H. Stpowska, A. Zamojski, Tetrahedron 1999, 55, 5519–5538.
F. P. Boulineau, A. Wei, Org. Lett. 2002, 4, 2281–2283.
Y.-H. Zhu, P. Vogel, Synlett 2001, 2001, 82–86.
Y. Cen, A. A. Sauve, J. Org. Chem. 2009, 74, 5779–5789.
T. G. T. G. Frihed, M. Heuckendorff, C. M. C. M. Pedersen, M. Bols,
Angew. Chemie - Int. Ed. 2012, 51, 12285–12288.
T. G. Frihed, C. M. Pedersen, M. Bols, European J. Org. Chem.
2014, 2014, 7924–7939.
Conclusion
[21]
[22]
[23]
[24]
[25]
[26]
A method for introducing a silyl substituent in the 4-position of a
carbohydrate scaffold has been developed. This mitigated the
synthesis of silylated glycosides, where two thioglycosides were
used as donors to investigate the reactivity and selectivity of this
previously unknown class of carbohydrates. Comparing
glycosylation reactions with these and a 3,4-di-deoxy donor
showed that the 4-C-silylated donors had surprisingly similar
properties in terms of selectivity. Although the relative reactivity
difference was small, it is appreciably different. The introduction
of C-Si bonds increased the donor reactivity outside the current
limits. The silylated glycosides have good shelf-life with little to no
alteration after several months of storage at room temperature.
Yet, under reaction conditions, at room temperature, this
compound class were shown to have a limited tolerance to strong
acids and bases.
I. Álvarez-Martínez, C. M. Pedersen, European J. Org. Chem. 2020,
2020, 4621–4634.
M. wa Mutahi, T. Nittoli, L. Guo, S. M. Sieburth, J. Am. Chem. Soc.
2002, 124, 7363–7375.
J. L. H. Madsen, C. U. Hjørringgaard, B. S. Vad, D. Otzen, T.
Skrydstrup, Chem. – A Eur. J. 2016, 22, 8358–8367.
G. K. Min, D. Hernández, T. Skrydstrup, Acc. Chem. Res. 2013, 46,
457–470.
W. S. Trahanovsky, J. M. Ochaoda, C. Wang, K. D. Revell, K. B.
Arvidson, Y. Wang, H. Zhao, S. Chung, S. Chang, in Carbohydr.
Synthons Nat. Prod. Chem., American Chemical Society, 2002, pp.
2–21.
[27]
[28]
[29]
T. Taniguchi, K. Nakamura, K. Ogasawara, Synlett 1996, 1996,
971–972.
M. Lautens, R. K. Belter, A. J. Lough, J. Org. Chem. 1992, 57, 422–
424.
Acknowledgements
C. S. Beshara, A. Hall, R. L. Jenkins, K. L. Jones, T. C. Jones, N. M.
Killeen, P. H. Taylor, S. P. Thomas, N. C. O. Tomkinson, Org. Lett.
2005, 7, 5729–5732.
The Villum Foundation is acknowledged for a block stipend for
MJP.
[30]
[31]
[32]
A. Hall, K. Jones, T. Jones, N. Killeen, R. Pörzig, P. Taylor, S. Yau,
N. Tomkinson, Synlett 2006, 2006, 3435–3438.
M. Heuckendorff, L. T. Poulsen, C. Hedberg, H. H. Jensen, Org.
Biomol. Chem. 2018, 16, 2277–2288.
Keywords: Silylation • Carbohydrates • Glycosylation •
Reactivity • Selectivity • Levoglucosenone • Functionalization
C. W. Chang, C. H. Wu, M. H. Lin, P. H. Liao, C. C. Chang, H. H.
5
This article is protected by copyright. All rights reserved.