Bioconjugate Chemistry
Article
viability of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2,
29−35.
(25) Ayers, J. D., Lowary, T. L., Morehouse, C. B., and Besra, G. S.
(1998) Synthetic arabinofuranosyl oligosaccharides as mycobacterial
arabinosyltransferase substrates. Bioorg. Med. Chem. Lett. 8, 437−442.
(26) Sanki, A. K., Boucau, J., Srivastava, P., Adams, S. S., Ronning, D.
R., and Sucheck, S. J. (2008) Synthesis of methyl 5-S-alkyl-5-thio-
arabinofuranosides and evaluation of their antimycobacterial activity.
Bioorg. Med. Chem. 16, 5672−5682.
(27) Boucau, J., Sanki, A. K., Voss, B. J., Sucheck, S. J., and Ronning,
D. R. (2009) A coupled assay measuring Mycobacterium tuberculosis
antigen 85C enzymatic activity. Anal. Biochem. 385, 120−127.
(28) Sanki, A. K., Boucau, J., Umesiri, F. E., Ronning, D. R., and
Sucheck, S. J. (2009) Design, synthesis and biological evaluation of
sugar-derived esters, alpha-ketoesters and alpha-ketoamides as
inhibitors for Mycobacterium tuberculosis antigen 85C. Mol. BioSyst.
5, 945−956.
(29) Ronning, D. R., Vissa, V., Besra, G. S., Belisle, J. T., and
Sacchettini, J. C. (2004) Mycobacterium tuberculosis antigen 85A and
85C structures confirm binding orientation and conserved substrate
specificity. J. Biol. Chem. 279, 36771−36777.
(30) Anderson, D. H., Harth, G., Horwitz, M. A., and Eisenberg, D.
(2001) An interfacial mechanism and a class of inhibitors inferred from
two crystal structures of the Mycobacterium tuberculosis 30 kDa major
secretory protein (Antigen 85B), a mycolyl transferase. J. Mol. Biol.
307, 671−681.
(31) Goulding, C. W., Perry, L. J., Anderson, D., Sawaya, M. R.,
Cascio, D., Apostol, M. I., Chan, S., Parseghian, A., Wang, S.-S., Wu, Y.,
Cassano, V., Gill, H. S., and Eisenberg, D. (2003) Structural genomics
of Mycobacterium tuberculosis: a preliminary report of progress at
UCLA. Biophys. Chem. 105, 361−370.
(32) Tonge, P. J. (2000) Another brick in the wall. Nat. Struct. Biol. 7,
94−96.
(33) Ronning, D. R., Klabunde, T., Besra, G. S., Vissa, V. D., Belisle, J.
T., and Sacchettini, J. C. (2000) Crystal structure of the secreted form
of antigen 85C reveals potential targets for mycobacterial drugs and
vaccines. Nat. Struct. Biol. 7, 141−146.
(34) Sanki, A. K., Boucau, J., Ronning, D. R., and Sucheck, S. J.
(2009) Antigen 85C-mediated acyl transfer between synthetic acyl
donors and fragments of the arabinan. Glycoconj. J. 5, 589−596.
(35) Umesiri, F. E., Sanki, A. K., Boucau, J., Ronning, D. R., and
Sucheck, S. J. (2010) Recent advances toward the inhibition of mAG
and LAM synthesis in Mycobacterium tuberculosis. Med. Res. Rev. 30,
290−326.
(8) Schroeder, E. K., de Souza, O. N., Santos, D. S., Blanchard, J. S.,
and Basso, L. A. (2002) Drugs that inhibit mycolic acid biosynthesis in
Mycobacterium tuberculosis. Curr. Pharm. Biotechnol. 3, 197−225.
(9) Takayama, K., Wang, C., and Besra, G. S. (2005) Pathway to
synthesis and processing of mycolic acids in Mycobacterium tuberculosis.
Clin. Microbiol. Rev. 18, 81−101.
(10) Fukui, Y., Hirai, T., Uchida, T., and Yoneda, M. (1965)
Extracellular proteins of tubercle bacilli. IV. Alpha and beta antigens as
major extracellular protein products and as cellular components of a
strain (H37Rv) of Mycobacterium tuberculosis. Biken J. 8, 189−199.
(11) Kilburn, J. O., Takayama, K., and Armstrong, E. L. (1982)
Synthesis of trehalose dimycolate (cord factor) by a cell-free system of
Mycobacterium smegmatis. Biochem. Biophys. Res. Commun. 108, 132−
139.
(12) Sathyamoorthy, N., and Takayama, K. (1987) Purification and
characterization of a novel mycolic acid exchange enzyme from
Mycobacterium tuberculosis. J. Biol. Chem. 262, 13417−13423.
(13) Jackson, M., Raynaud, C., Lanee
Winter, C., Ensergueix, D., Gicquel, B., and Daffe,
́
lle, M.-A., Guilhot, C., Laurent-
M. (1999)
́
Inactivation of the antigen 85C gene profoundly affects the mycolate
content and alters the permeability of the Mycobacterium tuberculosis
cell envelop. Mol. Microbiol. 31, 1573−1587.
(14) Puech, V., Bayan, N., Salim, K., Leblon, G., and Daffe,
́
M.
(2000) Characterization of the in vivo acceptors of the mycoloyl
residues transferred by the corynebacterial PS1 and the related
mycobacterial antigens 85. Mol. Microbiol. 35, 1026−1041.
(15) Belisle, J. T., Vissa, V. D., Sievert, T., Takayama, K., Brennan, P.
J., and Besra, G. S. (1997) Role of the major antigen of Mycobacterium
tuberculosis in cell wall biogenesis. Science 276, 1420−1422.
(16) Harth, G., Horwitz, M. A., Tabatadze, D., and Zamecnik, P. C.
(2002) Targeting the Mycobacterium tuberculosis 30/32 kDa mycolyl
transferase complex as a therapeutic strategy against tuberculosis:
Proof of principle using antisense technology. Proc. Natl. Acad. Sci.
U.S.A. 99, 15614−15619.
(17) Harth, G., Zamecnik, P. C., Tabatadze, D., Pierson, K., and
Horwitz, M. A. (2007) Hairpin extensions enhance the efficacy of
mycolyl transferase-specific antisense oligonucleotides targeting
Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. U.S.A. 104, 7199−204.
(18) Nguyen, L., and Pieters, J. (2009) Mycobacterial subversion of
chemotherapeutic reagents and host defense tactics: challenges in
tuberculosis drug development. Annu. Rev. Pharmacol. Toxicol. 49,
427−53.
(36) Amemiya, Y., Terada, A., Wachi, K., Miyazawa, H., Hatakeyama,
N., Matsuda, K., and Oshima, T. (1989) Synthesis and thromboxane
synthetase inhibitory activity of di- or tetrahydrobenzo[b]-
thiophenecarboxylic acid derivatives. J. Med. Chem. 32, 1265−1272.
(37) Bilokin, Y. V., Vasylyev, M. V., Branytska, O. V., Kovalenko, S.
M., and Chernykh, V. P. (1999) A novel and expedient approach to
new heterocycles containing benzothiophene, benzothieno[2,3-d]-
pyrimidine and coumarin moieties. Tetrahedron 55, 13757−13766.
(38) Baraldi, P. G., Romagnoli, R., Pavani, M. G., Nunez, M. C.,
Tabrizi, M. Ag., Shryock, J. C., Leung, E., Moorman, A. R., Uluoglu, C.,
Iannotta, V., Merighi, S., and Borea, P. A. (2003) Synthesis and
biological effects of novel 2-amino-3-naphthoylthiophenes as allosteric
enhancers of the A1 adenosine receptor. J. Med. Chem. 46, 794−809.
(39) Bishop, A. C., and Blair, E. R. (2006) A gatekeeper residue for
inhibitor sensitization of protein tyrosine phosphatases. Bioorg. Med.
Chem. Lett. 16, 4002−4006.
̂
(19) Gobec, S., Plantan, I., Mravljak, J., Savajger, U., Wilson, R. A.,
Besra, G. S., Soares, S. L., Appelberg, R., and Kikelj, D. (2007) Design,
synthesis, biochemical evaluation and antimycobacterial action of
phosphonate inhibitors of antigen 85C, a crucial enzyme involved in
biosynthesis of the mycobacterial cell wall. Eur. J. Med. Chem. 42, 54−
63.
(20) Kremer, L., Maughan, W. N., Wilson, R. A., Dover, L. G., and
Besra, G. S. (2002) The M. tuberculosis antigen 85 complex and
mycolyltransferase activity. Lett. Appl. Microbiol. 34, 233−237.
(21) Wang, J., Elchert, B., Hui, Y., Takemoto, J. Y., Bensaci, M.,
Wennergren, J., Chang, H., Rai, R., and Chang, C.-W. T. (2004)
Synthesis of trehalose-based compounds and study of their
antibacterial activity against Mycobacterium smegmatis. Bioorg. Med.
Chem. 12, 6397−6413.
(22) Rose, J. D., Maddry, J. A., Comber, R. N., Suling, W. J., Wilson,
L. N., and Reynolds, R. C. (2002) Synthesis and biological evaluation
of trehalose analogs as potential inhibitors of mycobacterial cell wall
biosynthesis. Carbohydr. Res. 337, 105−120.
(23) Barry, C. S., Backus, K. M., Barry, C. E., III, and Davis, B. G.
(2011) ESI-MS Assay of M. tuberculosis cell wall Antigen 85 enzymes
permits substrate profiling and design of a mechanism-based inhibitor.
J. Am. Chem. Soc. 133, 13232−13235.
(40) Kaila, N., Janz, K., Huang, A., Moretto, A., DeBernardo, S.,
Bedard, P. W., Tam, S., Clerin, V., Keith, J. C., Jr., Tsao, D. H. H.,
Sushkova, N., Shaw, G. D., Camphausen, R. T., Schaub, R. G., and
Wang, Q. (2007) 2-(4-Chlorobenzyl)-3-hydroxy-7,8,9,10-
tetrahydrobenzo[H]quinoline-4-carboxylic acid (PSI-697): Identifica-
tion of a clinical candidate from the quinoline salicylic acid series of P-
selectin antagonists. J. Med. Chem. 50, 40−64.
(41) Sanki, A. K., Sucheck, S. J., Ronning, D. R., Boucau, J., Umesiri,
F. E., and Ibrahim, D. A. (2010) Inhibitors of Antigen 85 from
Mycobacterium tuberculosis, Abstracts of Papers, 239th ACS National
Meeting, March 21−25, San Francisco, CA, United States, ORGN-118.
(24) Kam, B. L., Barascut, J.-L., and Imbach, J.-L. (1979) A general
method of synthesis and isolation, and an NMR spectroscopic study,
of tetra-O-acetyl-D-aldopentofuranose. Carbohydr. Res. 69, 135−142.
2415
dx.doi.org/10.1021/bc3004342 | Bioconjugate Chem. 2012, 23, 2403−2416