Selective reduction of nitroaromatic compounds on silver nanoparticles by visible light
constant value after a prolonged irradiation (50 s). These results
suggest that no dehalogenation occurs, and further 4-C-2-NBT
takes place a selective photoreduction. The calculated vibrational
modes of 4-C-2-NBT–Ag cluster and pure 4-C-2-NBT are shown
in Fig. 5, which are in good agreement with our experimental
data.
10874234, 90923003 and 20703064), the National Basic Research
Project of China (Grant 2009CB930701).
Supporting Information
Supporting information may be found in the online version of
this article.
The reason why two-site nitro groups of 2,4-DNBT and 4-C-2-
NBT was subjected to photoreaction might be attributed to the
close distance from the silver surface. The closer the distance of
nitro groups from the silver surface was, the more possible it
was for photoreaction to take place that was induced by a surface
plasmon resonance effect. In other words, the oscillating
electrons interact easily with the two-site nitro groups of
2,4-DNBT and 4-C-2-NBT because of closer distance. On the other
hand, as can be seen in Figs 1, 3, and 4, the C–H vibrations of
benzene ring were still retained after the photoreduction. This
implies that water present under ambient conditions is the
H-atom source for the selective photoreduction rather than
the benzene ring hydrogen atoms of 2,4-DNBT or 4-C-2-NBT.
It is believed that water was catalytically decomposed on the
silver surface to provide H-atom,[9] thus the two-site nitro
group of 2,4-DNBT or 4-C-2-NBT is in a more favorable position
to react with the H-atom than the four-site nitro or chloro
group that is far from the Ag surface. That is not to say that
the hydrogen atoms of the 2,4-DNBT or 4-C-2-NBT itself cannot
be used as the H-atom source for the selective photoreduction
but rather that water present under ambient conditions should be
the primary H-atom source in our experiments in terms of the C–H
vibrations of benzene ring reservation after photoreduction as
shown in Figs 1, 3, and 4.[3]
Our further interest was to investigate the selective photore-
action mechanisms. Therefore, we tried to record SERS spectra
of the adsorbed 2,4-DNBT or 4-C-2-NBT with 514.5 nm excitation.
It can be seen in Fig. 6 that the SERS spectra recorded with the
514.5 nm line are nearly the same as those obtained with
632.8 nm excitation relative to the normal Raman spectra. In
other words, no frequency dependence of the selective photo-
reaction was observed for both 2,4-DNBT and 4-C-2-NBT. This
is the usual understanding that a photoelectron is ejected more
readily using a shorter-wavelength than a longer-wavelength
laser, the present contradiction can be rationalized by assuming
that the enhanced photoreaction at longer wavelength is deeply
associated with charge transfer from the metal to the absorbed
molecule, which showed via UV–Vis spectra ( Fig. 7).
References
[1] G. M. Goncher, G. B. Harris, J. Chem. Phys. 1982, 77, 3767.
[2] C. J. Sandroff, D. R. Herschbach, J. Phys. Chem. 1982, 86, 3277.
[3] H. S. Han, S. W. Han, C. H. Kim, K. Kim, Langmuir 2000, 16, 1149.
[4] S. Garoff, D. A. Weitz, M. S. Alvarez, Chem. Phys. Lett. 1982, 92, 283.
[5] C. J. Chen, R. M. Osgood, Phys. Rev. Lett. 1983, 50, 1705.
[6] R. A. Wolkow, M. J. Moskovits, J. Chem. Phys. 1987, 87, 5858.
[7] J. S. Suh, N. H. Jang, D. H. Jeong, M. J. Moskovits, J. Phys. Chem. 1996,
100, 805.
[8] D. P. DiLella, R. R. Smardzewski, S. Guha, P. A. Lund, Surf. Sci. 1985,
158, 295.
[9] P. Wang, B. Huang, Z. Lou, X. Zhang, X. Qin, Y. Dai, Z. Zheng, X. Wang,
Chem. Eur. J. 2010, 16, 538.
[10] J. J. McMahon, T. P. Dougherty, J. D. Riley, G. T. Babcock, R. L. Carter,
Surf. Sci. 1985, 158, 381.
[11] M. O. Wolf, M. A. Fox, Langmuir 1996, 12, 955.
[12] S. Jabeen, T. J. Dines, R. Withnall, S. A. Leharne, B. Z. Chowdhry, Phys.
Chem. Chem. Phys. 2009, 11, 7476.
[13] Y. R. Fang, Y. Z Li, H. X. Xu, M. T. Sun, Langmuir 2010, 26, 7737.
[14] Y. F. Huang, H. P. Zhu, G. K. Liu, D. Y. Wu, B. Ren, Z. Q. Tian, J. Am.
Chem. Soc. 2010, 132, 9244.
[15] Y. Z. Huang, Y. R. Fang, Z. L. Yang, M. T. Sun, J. Phys. Chem. C 2010,
114, 18263.
[16] M. T. Sun, Y. Huang, L. Xia, X. Chen, H. Xu, J. Phys. Chem. C 2011,
115, 9629.
[17] K. A. Bunding, R. A. Durst, M. I. Bell, J. Electroanal. Chem. 1983, 150, 437.
[18] H. Feilchenfeld, G. Chumanov, T. M. Cotton, J. Phys. Chem. 1996,
100, 4937.
[19] T. H. Lu, R. L. Birke, J. R. Lombardi, Langmuir 1986, 2, 305.
[20] S. Sun, R. L. Birke, J. R. Lombardi, K. P. Leung, A. Z. Genack, J. Phys.
Chem. 1988, 92, 5965.
[21] S. W. Han, I. Lee, K. Kim, Langmuir 2002, 18, 182.
[22] S. J. Lee, K. Kim, Chem. Phys. Lett. 2003, 378, 122.
[23] K. Kim, Y. M. Lee, H. B. Lee, Y. Park, T. Y. Bae, Y. M. Jung, C. H. Choi, K.
S. Shin, J. Raman Spectrosc. 2010, 41, 187.
[24] P. G. Roth, R. S. Venkatachalam, F. J. Boerio, J. Chem. Phys. 1986, 85, 1150.
[25] H. Bercegol, F. Boerio, J. Phys. Chem. 1995, 99, 8763.
[26] R. S. Venkatachalam, F. J. Berio, P. G. Roth, J. Raman Spectrosc. 1988,
19, 281.
[27] Y. U. Seo, S. J. Lee, K. Kim, Chem. Commun. 2004, 664.
[28] G. Maduraiveeran, R. Ramaraj, Anal. Chem. 2009, 81, 7552.
[29] Y. Mikami, A. Noujima, T. Mitsudome, T. Mizugaki, K. Jitsukawa, K.
Kaneda, chem. Letter. 2010, 39, 223.
[30] J. N. Solanki, Z. Venkata, Ind. Eng. Chem. Res. 2011, 50, 7338.
[31] P. C. Lee, D. Meisel, J. Phys. Chem. 1982, 86, 3391.
[32] H. Zhu, X. Ke, X. Yang, S. Sarina, H. Liu, Angew. Chem. Int. Ed. 2010, 49,
9657.
In summary, we have discovered the 2,4-DNBT and 4-C-2-NBT on
silver sols were selectively reduced to 2-amino-4-nitro-benzenethiol
and 2-amino-4-chlorobenzenethiol simply by irradiating with
632.8 or 514.5 nm laser in ambient conditions. After only 30 or
20 s of continuous laser illumination, the reactions are finished,
suggesting that the selective photoreduction is a very facile
process. To the best of our knowledge, this is the first report of
visible light-induced selection reduction for nitroaromatic
compounds on silver sols.
[33] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, M. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian,
A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima,
Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E.
Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin,
V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M.
Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R.
Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P.
Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B.
Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision
A.02, Gaussian, Inc., Wallingford, CT, 2009.
Acknowledgements
This work was supported by the Liaoning Natural Science
Foundation, China (20092016), the Shenyang Natural Science
Foundation, China (F10-230-4-00 and 090082), and the Liaoning
University 211-Projects of the third period. Mengtao Sun thanks
the National Natural Science Foundation of China (Grants
[34] R. L. Garrell, C. Szafranski, W. Tanner, SPIE Raman Luminescence
Spectroscopies Technol. II 1990, 1336, 264.
J. Raman Spectrosc. (2012)
Copyright © 2012 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/jrs