forming transfer hydrogenation was developed in our
laboratory.7,8a,8b In these processes, primary alcohols
serve dually as reductants and aldehyde precursors, allow-
ing carbonyl addition to occur directly from the alcohol
oxidation level in the absence of stoichiometric organo-
metallic reagents. However, initial attempts to perform
stereoselective CÀH allylations of chiral β-stereogenic
primary alcohols under these conditions, which at the time
involved generation of the Ir catalyst in situ, were thwarted
by epimerization of the transient R-stereogenic aldehydes.
In subsequent work on anti-diastereo- and enantioselec-
tive carbonyl crotylations,8c it was found that para-sub-
stitution of the C,O-benzoate moiety of a cyclometalated
catalyst could favorably influence selectivity and reactivity
via remote electronic effects.9 Additionally, conventional
chromatographic isolation of the cyclometalated catalyst
was found to enhance the purity and, hence, performance
of the catalyst.8d
Table 1. Direct Allylation of the “Roche Alcohol” 1 with
Catalyst-Directed Diastereoselectivitya
The enhanced efficiency observed for the chromato-
graphically isolated catalyst, along with the ability to tune
catalyst performance via remote electronic effects, prompted
a reinvestigation of the transfer hydrogenative allylation
of β-stereogenic primary alcohols. Here, we report that
β-stereogenic primary alcohols participate in direct
a Cited yields are of diastereomeric mixtures isolated by silica gel
chromatography. Stereoisomeric ratios were determined by chiral sta-
tionary phase HPLC analysis using authentic samples of diastereomers
2aÀ2d. See Supporting Information for further experimental details.
(5) For selected examples of enantioselective carbonyl allylations
employing nucleophilic π-allyls derived from allylic alcohols and their
carboxylates, see: (a) Zanoni, G.; Gladiali, S.; Marchetti, A.; Piccinini,
P.; Tredici, I.; Vidari, G. Angew. Chem., Int. Ed. 2004, 43, 846. (b) Zhu,
S.-F.; Yang, Y.; Wang, L.-W.; Liu, B.; Zhou, Q.-L. Org. Lett. 2005, 7,
2333. (c) Howell, G. P.; Minnaard, A. J.; Feringa, B. L. Org. Biomol.
Chem. 2006, 4, 1278. (d) Zhang, T.-Z.; Dai, L.-X.; Hou, X.-L. Tetra-
hedron: Asymmetry 2007, 18, 251. (e) Wang, W.-F.; Zhang, T.; Shi, M.
Organometallics 2009, 28, 2640. (f) Jiang, J.-J.; Wang, D.; Wang, W.-F.;
Yuan, Z.-L.; Zhao, M.-X.; Wang, F.-J.; Shi, M. Tetrahedron: Asymme-
try 2010, 21, 2050. (g) Vogt, M.; Ceylan, S.; Kirschning, A. Tetrahedron
2010, 66, 6450. (h) Zhu, S.-F.; Qiao, X.-C.; Zhang, Y.-Z.; Wang, L.-X.;
Zhou, Q.-L. Chem. Sci. 2011, 2, 1135.
diastereoselective transfer hydrogenative allylation with
good to excellent levels of catalyst-directed stereoselectiv-
ity to furnish homoallylic alcohols. This protocol bypasses
discrete generation of configurationally unstable chiral
R-substituted aldehydes,10 which are used routinely in
polyketide construction, yet cannot be stored or chroma-
tographed without significant erosion of enantiomeric
purity.10a,11
In an initial experiment, the primary alcohol 1 derived
from the Roche ester12 was exposed to the cyclometalated
complex (S)-Ir-a-CN (5 mol %), which is modified by
(S)-SEGPHOS, in THF/H2O solvent at 60 °C using
Cs2CO3 (60 mol %) as the base and 4-CN-3-NO2BzOH
as the additive. The desired allylation product 2a was
generated stereoselectively in low isolated yield (Table 1,
entry 1). Elevating the reaction temperature enhanced the
isolated yield of 2a, but led to epimerization of the transient
R-substituted chiral aldehyde (entries 1À4). Remarkably,
increased loadings of Cs2CO3 (100 mol %) improved the
isolated yield of 2a while suppressing epimerization, and
(6) For catalytic enantioselective carbonyl allylation and crotylation
via NozakiÀHiyama coupling, see: (a) Bandini, M.; Cozzi, P. G.;
Umani-Ronchi, A. Angew. Chem., Int. Ed. 1999, 38, 3357. (b) Bandini,
M.; Cozzi, P. G.; Umani-Ronchi, A. Polyhedron 2000, 19, 537. (c)
Bandini, M.; Cozzi, P. G.; Umani-Ronchi, A. Tetrahedron 2001, 57,
835. (d) Inoue, M.; Suzuki, T.; Nakada, M. J. Am. Chem. Soc. 2003, 125,
€
1140. (e) Berkessel, A.; Mench, D.; Sklorz, C. A.; Schroder, M.;
Paterson, I. Angew. Chem., Int. Ed. 2003, 42, 1032. (f) Lee, J.-Y; Miller,
J. J.; Hamilton, S. S.; Sigman, M. S. Org. Lett. 2005, 7, 1837. (g)
McManus, H. A.; Cozzi, P. G.; Guiry, P. J. Adv. Synth. Catal. 2006,
348, 551. (h) Xia, G.; Yamamoto, H. J. Am. Chem. Soc. 2006, 128, 2554.
€
(i) Hargaden, G. C.; Muller-Bunz, H.; Guiry, P. J. Eur. J. Org. Chem.
2007, 4235. (j) Hargaden, G. C.; O’Sullivan, T.; Guiry, P. J. Org. Biomol.
Chem. 2008, 6, 562. (k) Zhang, Z.; Huang, J.; Ma, B.; Kishi, Y. Org. Lett.
2008, 10, 3073. (l) White, J. D.; Shaw, S. Org. Lett. 2011, 13, 2488.
(7) For selected reviews on CÀC bond forming hydrogenation and
transfer hydrogenation, see: (a) Bower, J. F.; Kim, I. S.; Patman, R. L.;
Krische, M. J. Angew. Chem., Int. Ed. 2008, 48, 34. (b) Patman, R. L.;
Bower, J. F.; Kim, I. S.; Krische, M. J. Aldrichimica Acta 2008, 41, 95. (c)
Han, S. B.; Kim, I. S.; Krische, M. J. Chem. Commun. 2009, 7278. (d)
Bower, J. F.; Krische, M. J. Top. Organomet. Chem. 2011, 43, 107. (e)
Hassan, A.; Krische, M. J. Org. Process Res. Dev. 2011, 15, 1236.
(8) (a) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc. 2008,
130, 6340. (b) Kim, I. S.; Ngai, M.-Y.; Krische, M. J. J. Am. Chem. Soc.
2008, 130, 14891. (c) Kim, I. S.; Han, S. B.; Krische, M. J. J. Am. Chem.
Soc. 2009, 131, 2514. (d) Gao, X.; Townsend, I. A.; Krische, M. J. J. Org.
Chem. 2011, 76, 2350.
(10) For selected examples of problematic aldehyde epimerization,
see: (a) Roush, W. R.; Palkowitz, A. D.; Ando, K. J. Am. Chem. Soc.
1990, 112, 6348. (b) Nelson, S. G.; Bungard, C. J.; Wang, K. J. Am.
Chem. Soc. 2003, 125, 13000. (c) Haidle, A. M.; Myers, A. G. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 12048. (d) Lane, J. W.; Chen, Y.; Williams,
R. M. J. Am. Chem. Soc. 2005, 127, 12684. (e) Hara, A.; Morimoto, R.;
Ishikawa, Y.; Nishiyama, S. Org. Lett. 2011, 13, 4036.
(11) As stated in ref 10a, footnote 12, attempts to purify the Roche
aldehyde by silica gel chromatography resulted in 5À7% racemization.
(12) Cohen, N.; Eichel, W. F.; Lopresti, R. J.; Neukom, C.; Saucy, G.
J. Org. Chem. 1976, 41, 3505.
(9) For selected examples of remote electronic effects in enantiose-
€
lective catalysis, see: (a) Jacobsen, E. N.; Zhang, W.; Guller, M. L.
J. Am. Chem. Soc. 1991, 113, 6703. (b) RajanBabu, T. V.; Ayers, T. A.;
Casalnuovo, A. L. J. Am. Chem. Soc. 1994, 116, 4101. (c) Hamada, T.;
Fukuda, T.; Imanishi, H.; Katsuki, T. Tetrahedron 1996, 52, 515. (d)
Shiomi, T.; Ito, J.-I.; Yamamoto, Y.; Nishiyama, H. Eur. J. Org. Chem.
2006, 5594.
Org. Lett., Vol. 14, No. 24, 2012
6303