COFE2O4/OCMC/CU (BDC) CATALYZED SYNTHESIS OF XANTHENES, QUINAZOLINS AND ACRIDINES
9 of 10
3.2 | Recyclability of catalyst
ORCID
Eventually, the reusability of theCoFe2O4/OCMC/Cu
(BDC)-MOF was studied under the optimized reaction
conditions. After completion of the reaction, the catalyst
was easily separated from the reaction mixture by an
external magnet and was reused in the three model reac-
tions shown in Figure 6. It is clear that the catalyst can
be used six times without a significant loss in activity per-
formance (Figure 6).
A plausible mechanism for the preparation of
octahydroquinazolinones, 1,8-dioxo decahydroacridines,
and tetrahydrobenzo[a]xanthen-11-ones using CoFe2O4/
OCMC/Cu (BDC) is shown in Scheme 3. It is presumed
that CoFe2O4 and Cu (BDC) acts as Lewis acids which
increase the electrophilicity of the carbonyl groups of the
dimedone and aldehyde through a strong coordination
bond.[40,41] The first step is assumed to be a Knoevenagel
condensation between the aldehyde and dimedone to
generate the adduct A, which can act as a Michael accep-
tor. Then urea/amine and 2-naphthol attack to interme-
diate A in a Michael-type reaction to produce an open
chain intermediate B,C,D. Finally, the intermediates
undergo intramolecular cyclization using the nucleo-
philic attack followed by dehydration to form the
products.
REFERENCES
[1] A. Maleki, Ultrason. Sonochem. 2018, 40, 460.
[2] A. Maleki, Tetrahedron 2012, 68, 7827.
[3] C. Cabrele, O. Reiser, J. Org. Chem. 2016, 81, 10109.
[4] A. Hollis, Z. Ahmed, New Engl. J. Med. 2013, 369, 2474.
[5] (a)A. Witt, J. Bergman, Curr. Org. Chem. 2003, 7, 659. (b)
S. B. Mhaske, N. P. Argade, Tetrahedron 2006, 62, 9787.
[6] (a)D. J. Connolly, D. Cusack, T. P. O'Sullivan, P. J. Guiry, Tet-
rahedron 2005, 61, 10153. (b)Z. Ma, Y. Hano, T. Nomura, Het-
erocycles 2005, 65, 2203.
[7] M. C. Fuente, D. Domínguez, Tetrahedron 2004, 60, 10019.
[8] Y. L. Chen, C. M. Lu, I. L. Chen, L. T. Tsao, J. P. Wang,
J. Med. Chem. 2002, 53, 4689.
[9] G. Alang, G. Kaur, R. Kaur, A. Singh, R. Tiwari, J. Young
Pharm. 2010, 2, 394.
[10] A. S. Gamage, A. J. Spicer, J. G. Atwell, J. G. Finlay,
C. B. Baguley, A. W. Denny, J. Med. Chem. 1999, 42, 2383.
[11] N. Srividya, P. Ramamurthy, P. Shanmugasundaram,
V. T. Ramakrishnan, J. Org. Chem. 1996, 61, 5083.
[12] M. Gensicka-Kowalewska, G. Cholewinski, K. Dzierzbicka,
RSC Adv. 2017, 7, 157.
[13] C. Pereira, A. M. Pereira, C. Fernandes, M. Rocha, R. Mendes,
M. P. Fernández-García, A. Guedes, P. B. Tavares, J.-
M. Grenèche, J. O. P. Araújo, Chem. Mater. 2012, 24, 1496.
[14] M. -L. Hu, V. Safarifard, E. Doustkhah, S. Rostamnia,
A. Morsali, N. Nouruzi, S. Beheshti, K. Akhbari, Micropor.
Mesopor. Mater. 2018, 256, 111.
4 | CONCLUSIONS
[15] Y. Li, R. T. Yang, Langmuir 2007, 23, 12937.
[16] B. Li, H.-M. Wen, W. Zhou, B. Chen, J. Phys. Chem. Lett. 2014,
5, 3468.
[17] K. Tan, S. Zuluaga, E. Fuentes, E. C. Mattson, J.-F. Veyan,
H. Wang, J. Li, T. Thonhauser, Y. J. Chabal, Nat. Commun.
2016, 7, 13871.
[18] V. Pillai, D. Shah, J. Magn. Magn. Mater. 1996, 163, 243.
[19] P. Horcajada, T. Chalati, C. Serre, B. Gillet, C. Sebrie, T. Baati,
J. F. Eubank, D. Heurtaux, P. Clayette, C. Kreuz, Nat. Mater.
2010, 9, 172.
In conclusion, we have demonstrated that CoFe2O4/
OCMC/Cu (BDC) nanocatalyst is an effective catalyst for
the MCRs of xanthenes, quinazolines and acridines using
aromatic aldehydes, dimedone, aryl amines/2-naph
thol/urea at room temperature under ultrasonic irradia-
tion conditions. The heterocyclic compounds including
tetrahydrobenzo[a]xanthen-11-ones,
[20] H. Zheng, Y. Zhang, L. Liu, W. Wan, P. Guo, A. M. Nyström,
X. Zou, J. Am. Chem. Soc. 2016, 138, 962.
[21] G. Lu, J. T. Hupp, J. Am. Chem. Soc. 2010, 132, 7832.
[22] I. Stassen, B. Bueken, H. Reinsch, J. Oudenhoven, D. Wouters,
J. Hajek, V. Van Speybroeck, N. Stock, P. Vereecken,
R. VanSchaijk, Chem. Sci. 2016, 7, 5827.
[23] S. Rostamnia, F. Mohsenzad, Mol. Catal. 2018, 445, 12.
[24] B. Salahshournia, H. Hamadi, V. Nobakht, Appl. Organomet.
Chem. 2018, 32, e4416.
octahydroquinazolinones and 1,8-dioxo-decahydroacri
dines were obtained in high yields. The catalyst can be
recovered and reused up to six times without substantial
loss of its reactivity for the synthesis of the corresponding
products. The one-pot nature and the use of eco-friendly
heterogeneous catalyst could make this reported method-
ology an interesting alternative for various multi-step
approaches.
[25] A. Rossin, G. Tuci, L. Luconi, G. Giambastiani, ACS Catal.
2017, 7, 5035.
[26] X. Zhang, Z. Zhang, J. Boissonnault, S. M. Cohen, Chem.
Commun. 2016, 52, 8585.
[27] S. Rostamnia, H. Alamgholiloo, M. Jafari, R. Rookhosh,
A. R. Abbasi, Appl. Organomet. Chem. 2016, 30, 954.
[28] S. Rostamnia, H. Alamgholiloo, X. Liu, J. Colloid Interface Sci.
2016, 469, 310.
ACKNOWLEDGMENTS
The author gratefully acknowledges the financial support
of this work by the Research Affairs Office of the Islamic
Azad University, Qom Branch, Qom, I. R. Iran [grant
number 2016-13929].