10.1002/anie.202108587
Angewandte Chemie International Edition
RESEARCH ARTICLE
Furthermore, when the in situ-made Ni(OAc)2-dMebpy complex
was irradiated by purple light for 1 h, the formation of OAc radical
was observed by electron paramagnetic resonance (EPR)
spectroscopy (Figure S15) with N-tert-butyl-α-phenylnitrone
(PBN) as a radical trap (Scheme 6, 1). The spin adduct of the OAc
radical is characterized by hyperfine coupling constants that
agree with the literature data.[26] The formation of the OAc radical
indicates homolysis of the Ni-O bond and hence the formation of
Ni(I) species under the irradiation of light. We next probed the
possibility of oxidative addition at the Ni(I) species with an aryl
halide and the following C-N coupling reaction. In the absence of
substrates, the Ni(OAc)2-dMebpy complex was irradiated under
the purple light for 4 h, which was expected to generate a Ni(I)
complex. Then in the dark, the substrates were introduced and
reacted for 24 h, affording the corresponding arylamine with 16%
yield (Scheme 6, 2). Still further, when the Ni(I) complex,
generated in situ from the comproportionation of Ni(II)(OAc)2-
dMebpy and Ni(0)(dMebpy)(cod) complexes, was used as
catalyst, the desired product was obtained in 93% yield under the
irradiation of light and 25% yield under thermal conditions
(Scheme 6, 3). In addition, as shown in Table 1, Ni(II) species are
inactive without light irradiation. These observations support the
view that this C-N coupling proceeds via a dMebpy-ligated
Ni(I)/N(III) cycle, involving oxidative addition of ArBr at a Ni(I)-
dMebpy species and reductive elimination of an aryl and amide
group at Ni(III)-dMebpy to form the C-N bond, with light required
to generate the Ni(I) species from off-cycle Ni(II)-dMebpy species
and sustain the catalytic turnover.[8e] However, the possibility of a
Ni(II)-amine species being the active catalyst and/or amine
participation in the Ni(II)-dMebpy catalysed C-N coupling, as put
forward by Miyake and coworkers, cannot be ruled out.[8c]
Acknowledgements
This research is supported by the National Natural Science
Foundation of China (21871171), and the 111 project (B14041).
Keywords: C-N coupling • chiral N-aryl amines • chiral N-aryl
amino acids • chiral N-aryl amino alcohols • nickel catalysis
[1] a) J. Bariwal, E. V. Van der Eycken, Chem. Soc. Rev. 2013, 42, 9283-
9303; b) P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116,
12564-12649; c) P. A. Forero-Cortés, A. M. Haydl, Org. Process Res.
Dev. 2019, 23, 1478-1483; d) R. Dorel, C. P. Grugel, A. M. Haydl,
Angew. Chem. Int. Ed. 2019, 58, 17118-17129; Angew. Chem. 2019,
131, 17276-17287.
[2] D. G. Brown, J. Bostrꢀm, J. Med. Chem. 2016, 59, 4443-4458.
[3] S. Bhunia, G. Goroba Pawar,S.VijayKumar,Y. Jiang, D. Ma, Angew.
Chem. Int. Ed. 2017, 56, 16136-16179; Angew. Chem. 2017, 129,
16352-16397.
[4] S. Z. Tasker, E. A. Standley, T. F. Jamison, Nature 2014, 509, 299-309.
[5] M. Marín, R. J. Rama, M. C. Nicasio, Chem. Rec. 2016, 16, 1819-1832.
[6] a) J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1997, 119, 6054-
6058; b) G. Manolikakes, A. Gavryushin, P. Knochel, J. Org. Chem.
2008, 73, 1429-1434.
7] a) S. D. Ramgren, A. L. Silberstein, Y. Yang, N. K. Garg, Angew. Chem.
Int. Ed. 2011, 50, 2171-2173; Angew. Chem. 2011, 123, 2219-2221; b)
N. H. Park, G. Teverovskiy, S. L. Buchwald, Org. Lett. 2014, 16, 220-
223; c) S. Ge, R. A. Green, J. F. Hartwig, J. Am. Chem. Soc. 2014, 136,
1617-1627; d) C. M. Lavoie, P. M. MacQueen, N. L. Rotta-Loria, R. S.
Sawatzky, A. Borzenko, A. J. Chisholm, B. K. V. Hargreaves, R.
McDonald, M. J. Ferguson, M. Stradiotto, Nat. Commun. 2016, 7,
11073; e) J. P. Tassone, E. V. England, P. M. MacQueen, M. J.
Ferguson, M. Stradiotto, Angew. Chem. Int. Ed. 2019, 58, 2485-2489;
Angew. Chem. 2019, 131, 2507-2511;f) J. S. K. Clark, M. J. Ferguson,
R. McDonald, M. Stradiotto, Angew. Chem. Int. Ed. 2019, 58, 6391-
6395; Angew. Chem. 2019, 131, 6457-6461; g) R. Y. Liu, J. M. Dennis,
S. L. Buchwald, J. Am. Chem. Soc. 2020, 142, 4500-4507.
[8] a) E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. DiRocco, I.
W. Davies, S. L. Buchwald, D. W. C. MacMillan, Science 2016, 353,
279-283; b) M. S. Oderinde, N. H. Jones, A. Juneau, M. Frenette, B.
Aquila, S. Tentarelli, D. W. Robbins, J. W. Johannes, Angew. Chem.
Int. Ed. 2016, 55, 13219-13233; Angew. Chem. 2016, 128, 13413-
13417; c) C.-H. Lim, M. Kudisch, B. Liu, G. M. Miyake, J. Am. Chem.
Soc. 2018, 140, 7667-7673; d) M. Kudisch, C.-H. Lim, P. Thordarson,
G. M. Miyake, J. Am. Chem. Soc. 2019, 141, 19479-19486; e) N. A.
Till, L. Tian, Z. Dong, G. D. Scholes, D. W. C. MacMillan, J. Am. Chem.
Soc. 2020, 142, 15830-15841.
[9] a) C. Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z. Liu, Q. Hou,
D. Bao, J. T. Starr, J. Chen, M. Yan, P. S. Baran, Angew. Chem. Int.
Ed. 2017, 56, 13088-13093; Angew.Chem. 2017, 129,13268-13273; b)
Y. Kawamata, J. C. Vantourout, D. P. Hickey, P. Bai, L. Chen, Q. Hou,
W. Qiao, K. Barman, M. A. Edwards,A. F. Garrido-Castro, J. N. Gruyter,
H. Nakamura, K. Knouse, C. Qin, K. J. Clay, D. Bao, C. Li, J. T. Starr,
C. Garcia-Irizarry, N. Sach, H.S. White, M. Neurock, S. D. Minteer, P.S.
Baran, J. Am. Chem. Soc. 2019, 141, 6392-6402.
[10] For the synthesis of chiral N-aryl amines and amino acid esters by Pd
catalysis, see: a) S. Wagaw, R. A. Rennels, S. L. Buchwald, J. Am.
Chem. Soc. 1997, 119, 8451-8458; b) Q. Shen, S. Shekhar, J. P.
Stambuli, J. F. Hartwig, Angew. Chem. Int. Ed. 2005, 44, 1371-1375;
Angew. Chem. 2005, 117, 1395-1399; c) R. Surasani, D. Kalita, A. V.
Dhanunjaya Rao, K. B. Chandrasekhar, Beilstein J. Org. Chem. 2012,
8, 2004-2018; d) S. M. King, S. L. Buchwald, Org. Lett. 2016, 18, 4128-
4131; e) B. T. Ingoglia, S. L. Buchwald, Org. Lett. 2017, 19, 2853-5856;
f) S. Sharif, D. Mitchell, M. J. Rodriguez, J. L. Farmer, M. G. Organ,
Chem. Eur. J. 2016, 22, 14860-14863; g) H. Hammoud, M. Schmitt, E.
Blaise, F. Bihel, J. Bourguignon, J. Org. Chem. 2013, 78, 7930-7937.
[11] For the synthesis of chiral N-aryl amino acids by Cu catalysis, see: a)
D. Ma, Y. Zhang, J. Yao, S. Wu, F. Tao, J. Am. Chem. Soc. 1998, 120,
12459-12467; b) D. Ma, C. Xia, Org. Lett. 2001, 3, 2583-2586.
Scheme 6. Reactions aimed to probe the C-N coupling mechanism. Yields
determined by 1H NMR. For details, see SI.
Conclusion
In summary, we have developed a highly enantioretentive
photochemical C-N coupling of commercially available chiral
amines, amino alcohols, and amino acid esters with various aryl
bromides. The reaction is catalyzed by an easily-available Ni(II)-
dMebpy complex, with no need for an external photosensitizer. It
exhibits a very wide substrate scope, good functional group
compatibility and excellent levels of enantioretention, providing a
practical, viable alternative pathway for the synthesis of chiral N-
aryl amines, amino alcohols, and amino acid esters, some of the
most important building blocks in pharmaceutical and
agrochemical synthesis. The stabilizing bidentate ligand and mild
organic base alongside the mild reaction conditions enabled by
light are likely to be the key for the observed enantioretention.
6
This article is protected by copyright. All rights reserved.