sterically hindered ketoximes 1v and 1x produced tetrazoles in moderate yields (Table 2, entries 22, and 24). Incidentally, entry 24 displays
the synthetic utility of this reaction being able to work with complex natural product-like molecules. In every reaction, only the trans-group
was exclusively rearranged.
We then applied this tetrazole formation method to bisaryl ketoxime 1y, which is prone to isomerization. As shown in Table 3, the
starting ratio of isomers resulted in the corresponding ratio of products; therefore, isomerization did not take place during our tetrazole
formation reaction. These results show that this reaction proceeds stereospecifically.
A plausible reaction mechanism for this reaction is shown in Scheme 1. Initially, the ketoxime is deprotonated by DBU and attacks
DPPA to form a phosphate intermediate. Subsequently, the phosphate intermediate undergoes a Beckmann rearrangement to generate a
nitrilium ion, followed by attack by the free azide anion and cyclization yields the desired tetrazole.
In summary, we developed a novel method for the synthesis of 1,5-tetrazole from ketoximes via a Beckmann rearrangement utilizing
DPPA as both the activator and azide source. Various ketoximes were easily converted into the corresponding tetrazoles. No ketoxime
isomerization occurred during the reaction and the rearrangement occurred stereospecifically with only the migration of trans-group. The
advantages of this method include operational simplicity and increased
safety as toxic or explosive azide reagents can be avoided.
General procedure
DPPA (52 μL, 0.24 mmol) and DBU (36 μL, 0.24 mmol) were
added to a solution of the ketoxime (0.20 mmol) in MeCN or toluene
(1 mL). After stirring for 16 h at reflux, the mixture was diluted with
AcOEt (30 mL). Then, the mixture was washed with saturated
aqueous NaHCO3 (25 mL) and brine (25 mL) and dried over Na2SO4.
Concentration of the solvent in vacuo followed by the purification of
the residue on a silica gel column (AcOEt:n-Hexane 1:3–3:1) yielded
the corresponding 1,5-disubstituted tetrazole.
Acknowledgments
This study was supported by the JSPS Grant-in-Aid for Scientific Research (C) number 26450145, and Professor Y. Uozumi’s JST-
ACCEL program (JPMJAC1401).
References and notes
1.
2.
Butler, R. N. In Comprehensive Heterocyclic Chemistry; Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V.; Pergamon; Oxford, 1996, 674.
(a) Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd. 2007, 43, 1. (b) Ostrovskii, V. A.; Trifonov, R. E.; Popva, E. A. Russ. Chem.
Bull., Int. Ed. 2012, 61, 768. (c) Wei, C.; Bian, M.; Gong, G. Molecules 2015, 20, 5528.
3.
4.
(a) Squires, R. F.; Saederup, E.; Crawley, J. N.; Skolnick, P.; Paul, S. M. Life Sci. 1984, 35, 1439. (b) Jung, M. E.; Lal, H.; Gatch, M. B. Neurosci. Biobehav.
Rev. 2002, 26, 429.
(a) Nishi, T.; Tabusa, F.; Tanaka, T.; Shimizu, T.; Nakagawa, K. Chem. Pharm. Bull. 1985, 33, 1140. (b) Nishi, T.; Kimura, Y.; Nakagawa, K. YAKUGAKU
ZASSHI 2000, 120, 1247. (c) Lee, S.; Park, D.; Park, S. In Antiplatelet Therapy in Cardiovascular Disease; Waksman, R.; Gurbel, P. A., Gaglia, M. A., Eds.;
Wiley Online Library 2014, 117-124.
5.
6.
7.
A review of syntheses of 1,5-disubstituted tetrazole derivatives; Sarvary, A.; Maleki, A. Mol. Divers. 2015, 19, 189.
(a) Beckmann, E. Ber. 1886, 19, 998. (b) Donaruma, L. G.; Heldt, W. Z. Org. React. 1960, 11, 1. (c) Gawley, R. E. Org. React. 1988, 35, 14.
(a) Schmidt, R. F. Ber. 1924, 57, 704. (b) Wolff, H. Org. React. 1946, 3, 307. (c) Wrobleski, A.; Coombs, T. C.; Huh, C. W.; Li, S.-W.; Aubé, J. Org. React.
2012, 78, 1.
8.
(a) Nishiyama, K.; Miyata, I. Bull. Chem. Soc. Jpn. 1985, 58, 2419. (b) Abraham, J.; Jindal, P. D.; Singh, H. Indian J. Chem. 1989, 28B, 1051. (c) Suzuki, H.;
Hwang, Y. S.; Nakaya, C.; Matano, Y. Synthesis 1993, 1218. (d) El-Ahl, A. S.; Elmorsy, S. S.; Soliman, H. Amer, F. A. Tetrahedron Lett. 1995, 36, 7337. (e)
Cristau, H.; Marat, X.; Vors, J.; Pirat, J. Tetrahedron Lett. 2003, 44, 3179. (f) Motiwala, H. F.; Charaschanya, M.; Day, V. W.; Aubé, J. J. Org. Chem. 2016,
81, 1593.
9.
e-EROS Encyclopedia of Reagents for Organic Synthesis, Wiley Online Library (a) Sodium Azide (2008); Turnbull, K.; Narsaiah, B.; Yadav, J. S.; Yakaiah,
T.; Lingaiah, B. P. V. (b) Azidotrimethylsilane (2007); Nishiyama, K.; Wang, C.; Label, H. (c) Hydrazoic Acid (2013); Breton, G. W.; Kropp, P. J.; Banert, K.
(d) Cyanogen Azide (2001); Goldsmith, D.
10. (a) Shioiri, T.; Ninomiya, K.; Yamada, S. J. Am. Chem. Soc. 1972, 94, 6203. (b) For a review, see: Shioiri, T. TCIMAIL 2007, 134, 2. (c) Shioiri, T. In New
Horizons of Process Chemistry-Scalable Reactions and Technologies; Tomioka, K.; Shioiri, T.; Sajiki, H., Eds.; Springer Nature: Singapore, 2017, 131-145.
11. (a) Ishihara, K.; Kawashima, M.; Shioiri, T.; Matsugi, M. Synlett 2016, 27, 2225. (b) Ishihara, K.; Kawashima, M.; Matsumoto, T.; Shioiri, T.; Matsugi, M.
Synthesis 2018, 50, 1293.
12. (a) For a review, see: Shioiri, T. Wako Junyaku Jiho 2005, 73, 6. (b) Shioiri, T.; Yamada, S. Chem. Pharm. Bull. 1974, 22, 855. (c)Mizuno, M.; Shioiri, T.
Chem. Commun. 1997, 2165. (d) Ishihara, K.; Hamamoto, H.; Matsugi, M.; Shioiri, T. Tetrahedron Lett. 2015, 56, 3169.
Supplementary Material
Supporting information for this article is available online at XXX.
Graphical Abstract