JOURNAL OF CHEMICAL RESEARCH 2014 253
4
M. Arndt, O. Nairz, J. Vos-Andreae, C. Keller, G. van der Zouw and A.
Zeilinger, Nature, 1999, 401, 680.
R.F. Curl, Angew. Chem. Int. Ed. Engl., 1997, 36, 1566.
H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl and R.E. Smalley, Nature,
1985, 318, 162.
E. Nakamura, Angew. Chem. Int. Ed., 2013, 52, 236.
M. Wielopolski, A. Molina-Ontoria, C. Schubert, J.T. Margraf, E. Krokos,
J. Kirschner, A. Gouloumis, T. Clark, D.M. Guldi and N. Martín, J. Am.
Chem. Soc., 2013, 135, 10372.
to remove toluene. The crude product was purified by column
chromatography on silica gel (toluene/ethyl acetate=1/1, v/v) to give
the desired product 7 (389 mg, 43%) as a black solid. HRMS (ESI+):
calcd for C114H102N10O12Na [M+Na]+ 1826.7610; found 1826.7611.
Cyclen-C60-1: Trifluoroacetic acid (1.0 mL, 13.4 mmol) was added
slowly to a solution of 6 (90 mg, 71.3 µmol) in 50 mL of CH2Cl2, at room
temperature. The solution was stirred at room temperature overnight.
The mixture was concentrated under reduced pressure to remove
the solvent and then washed with CH2Cl2 to remove the impurities.
Deprotected product cyclen-C60-1 (80 mg, 86%) was obtained as a
brownish solid. m.p.>260 °C; 1H NMR (400 MHz, DMSO-d6): δ
4.75–4.62 (m, 4H), 3.53 (s, 2H), 3.28 (s, 4H), 3.16–3.06 (m, 10H), 2.91
(s, 4H) ppm; 13C NMR (100 MHz, DMSO-d6): δ 155.5, 146.6, 145.9,
145.6, 145.4, 145.2, 144.71, 144.68, 144.0, 142.6, 142.1, 141.8, 141.5,
5
6
7
8
9
T. Liu and A. Troisi, Adv. Mater., 2013, 25, 1038.
10 R. Charvet, Y. Yamamoto, T. Sasaki, J. Kim, K. Kato, M. Takata, A. Saeki,
S. Seki and T. Aida, J. Am. Chem. Soc., 2012, 134, 2524.
11 B. Ballesteros, G. de la Torre, A. Shearer, A. Hausmann, M.Á. Herranz,
D.M. Guldi and T. Torres, Chem.–Eur. J., 2010, 16, 114.
12 J.-C. Wu, D.-X. Wang, Z.-T. Huang and M.-X. Wang, J. Org. Chem., 2010,
75, 8604.
141.3, 139.5, 135.4, 72.1, 67.1, 48.2, 44.3, 42.2, 42.0 ppm; IR: νmax
/
13 J. Iehl, R.P. de Freitas, B. Delavaux-Nicot and J.-F. Nierengarten, Chem.
Commun., 2008, 2450.
14 H. Isobe, K. Cho, N. Solin, D.B. Werz, P.H. Seeberger and E. Nakamura,
Org. Lett., 2007, 9, 4611.
15 A. Biebersdorf, R. Dietmüller, A.S. Susha, A.L. Rogach, S.K. Poznyak,
D.V. Talapin, H. Weller, T.A. Klar and J. Feldmann, Nano Lett., 2006, 6,
1559.
16 D.M. Guldi and M. Prato, Acc. Chem. Res., 2000, 33, 695.
17 H.W. Kroto, A.W. Allaf and S.P. Balm, Chem. Rev., 1991, 91, 1213.
18 T. Baati, F. Bourasset, N. Gharbi, L. Njim, M. Abderrabba, A. Kerkeni, H.
Szwarc and F. Moussa, Biomaterials, 2012, 33, 4936.
19 R. Bakry, R.M. Vallant, M. Najam-ul-Haq, M. Rainer, Z. Szabo, C.W.
Huck and G.K. Bonn, Int. J. Nanomed., 2007, 2, 639.
20 S. Bosi, T. Da Ros, G. Spalluto, J. Balzarini and M. Prato, Bioorg. Med.
Chem. Lett., 2003, 13, 4437.
21 Y. Marcus, A.L. Smith, M.V. Korobov, A.L. Mirakyan, N.V. Avramenko
and E.B. Stukalin, J. Phys. Chem. B, 2001, 105, 2499.
cm−1 =3400–2500, 1667, 1424, 1123; UV-Vis: λmax/nm=253, 325;
HRMS (ESI+): calcd for C72H28N5 [M+H]+ 962.2345; found 962.2342.
Bis(cyclen)-C60-2: Trifluoroacetic acid (1.0 mL, 13.4 mmol) was
added slowly to a solution of 7 (90 mg, 49.9 µmol) in 50 mL of CH2Cl2,
at room temperature. The solution was stirred at room temperature
overnight. The mixture was concentrated under reduced pressure
to remove the solvent and then washed with CH2Cl2 to remove the
impurities. Deprotected product bis(cyclen)-C60-2 (92 mg, 98%)
was obtained as a brownish solid. IR: νmax/cm−1 =3434, 1677, 1198,
1128; HRMS (ESI+): calcd for C84H55N10 [M+H]+ 1203.4611; found
1203.4613.
This work was supported by grants from the Basic Research
Program of National Defense of China (B1520110007).
22 R.S. Ruoff, D.S. Tse, R. Malhotra and D.C. Lorents, J. Phys. Chem., 1993,
97, 3379.
23 S. Shinoda, Chem. Soc. Rev., 2013, 42, 1825.
24 R.D. Hancock and A.E. Martell, Chem. Rev., 1989, 89, 1875.
25 R. Reichenbach-Klinke, M. Kruppa and B. König, J. Am. Chem. Soc.,
2002, 124, 12999.
Received 9 January 2014; accepted 21 February 2014
Paper 1402390 doi: 10.3184/174751914X13945582435462
Published online:2 April 2014
26 M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc.,1993, 115, 9798.
27 M. Prato, M. Maggini, C. Giacometti, G. Scorrano, G. Sandonà and G.
Farnia, Tetrahedron, 1996, 52, 5221.
28 G. Angelini, C. Cusan, P. De Maria, A. Fontana, M. Maggini, M. Pierini,
M. Prato, S. Schergna and C. Villani, Eur. J. Org. Chem., 2005, 1884.
29 K. Kordatos, T. Da Ros, S. Bosi, E. Vázquez, M. Bergamin, C. Cusan, F.
Pellarini, V. Tomberli, B. Baiti, D. Pantarotto, V. Georgakilas, G. Spalluto
and M. Prato, J. Org. Chem., 2001, 66, 4915.
References
1
J. Zhang, F.L. Bowles, D.W. Bearden, W.K. Ray, T. Fuhrer, Y. Ye, C.
Dixon, K. Harich, R.F. Helm, M.M. Olmstead, A.L. Balch and H.C. Dorn,
Nature Chem., 2013, 5, 880.
2
3
J. Cami, J. Bernard-Salas, E. Peeters and S.E. Malek, Science, 2010, 329,
1180.
A. Mishra and P. Bäuerle, Angew. Chem. Int. Ed., 2012, 51, 2020.
JCR1402390_FINAL.indd 253
27/03/2014 14:16:08