Organic Letters
Letter
Hayaki Okai − Department of Chemistry, Graduate School of
Natural Science and Technology, Shimane University,
Matsue 690-8504, Japan
Scheme 5. Plausible Mechanism for the Catalytic Synthesis
of 3 and 5
Marina Oka − Department of Chemistry, Graduate School of
Natural Science and Technology, Shimane University,
Matsue 690-8504, Japan
Ryoma Ohkado − Department of Chemistry, Graduate School
of Natural Science and Technology, Shimane University,
Matsue 690-8504, Japan
Complete contact information is available at:
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported in part by JSPS/MEXT KAKENHI
(Grant-in-Aid for Scientific Research (C), 19K05617) and the
Electric Technology Research Foundation of Chugoku.
REFERENCES
■
(1) (a) Sundberg, R. Indoles. Academic Press: London, 1996.
(b) Sharma, V.; Kumar, P.; Pathak, D. J. Heterocycl. Chem. 2010, 47,
491−502. (c) Sravanthi, T. V.; Manju, S. L. Eur. J. Pharm. Sci. 2016,
91, 1−10.
and I− (step v), which are converted to I2 and water by the
aerobic flavin catalysis. Therefore, the bifunctionalization of 1
with 2 and 4 gives 5 through the aerobic oxidative C−N, S−S,
and C−S bond formations, and the entire reaction proceeds in
a highly atom-economical manner by the consumption of only
O2.
In conclusion, we performed the first efficient aerobic
synthesis of 3 from simple compounds 1 and 2 via a metal-free,
flavin−iodine-catalyzed reaction. Moreover, combination of
the flavin−iodine-catalyzed aerobic oxidative azolation with
sulfenylation readily afforded bifunctionalized compound 5
from the corresponding simple components 1, 2, and 4 via the
one pot multistep reaction that involved oxidative C−N, S−S,
and C−S bond formations. Owing to the coupled flavin−
iodine catalysis, the present reaction required only O2, which
does not pose any risk of pollution, and generated environ-
mentally benign water as the sole waste, thus establishing this
reaction to be an atom-economical strategy. The present
findings will provide a novel paradigm for green trans-
formations and one-pot multistep synthesis using O2.
(2) (a) Cacchi, S.; Fabrizi, G. Chem. Rev. 2005, 105, 2873−2920.
(b) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875−
2911. (c) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48,
9608−9644. (d) Shiri, M. Chem. Rev. 2012, 112, 3508−3549. (e) Liu,
S.; Zhao, F.; Chen, X.; Deng, G.-J.; Huang, H. Adv. Synth. Catal. 2020,
362, 3795−3823.
(3) (a) Kobayashi, J. i.; Suzuki, H.; Shimbo, K.; Takeya, K.; Morita,
H. J. Org. Chem. 2001, 66, 6626−6633. (b) Ma, B.; Banerjee, B.;
Litvinov, D. N.; He, L.; Castle, S. L. J. Am. Chem. Soc. 2010, 132,
1159−1171.
(4) (a) Deslandes, S.; Chassaing, S.; Delfourne, E. Tetrahedron Lett.
2010, 51, 5640−5642. (b) Deslandes, S.; Lamoral-Theys, D.; Frongia,
̀
C.; Chassaing, S.; Bruyere, C.; Lozach, O.; Meijer, L.; Ducommun, B.;
Kiss, R.; Delfourne, E. Eur. J. Med. Chem. 2012, 54, 626−636.
(5) Lauria, A.; Patella, C.; Dattolo, G.; Almerico, A. M. J. Med. Chem.
2008, 51, 2037−2046.
(6) La Regina, G.; Bai, R.; Rensen, W. M.; Di Cesare, E.; Coluccia,
A.; Piscitelli, F.; Famiglini, V.; Reggio, A.; Nalli, M.; Pelliccia, S.; Da
Pozzo, E.; Costa, B.; Granata, I.; Porta, A.; Maresca, B.; Soriani, A.;
Iannitto, M. L.; Santoni, A.; Li, J.; Miranda Cona, M.; Chen, F.; Ni,
Y.; Brancale, A.; Dondio, G.; Vultaggio, S.; Varasi, M.; Mercurio, C.;
Martini, C.; Hamel, E.; Lavia, P.; Novellino, E.; Silvestri, R. J. Med.
Chem. 2013, 56, 123−149.
ASSOCIATED CONTENT
* Supporting Information
■
sı
The Supporting Information is available free of charge at
(7) He, L.; Yang, L.; Castle, S. L. Org. Lett. 2006, 8, 1165−1168.
(8) This NCS-mediated method was successfully applied to the total
synthesis of Celogentin C, see: Ma, B.; Litvinov, D. N.; He, L.;
Banerjee, B.; Castle, S. L. Angew. Chem., Int. Ed. 2009, 48, 6104−
6107. and ref 3b.
Experimental procedures and characterization data for
known and new compounds (PDF)
(9) Wu, W.-B.; Huang, J.-M. Org. Lett. 2012, 14, 5832−5835.
(10) (a) Morimoto, K.; Ohnishi, Y.; Nakamura, A.; Sakamoto, K.;
Dohi, T.; Kita, Y. Asian J. Org. Chem. 2014, 3, 382−386.
(b) Morimoto, K.; Ogawa, R.; Koseki, D.; Takahashi, Y.; Dohi, T.;
Kita, Y. Chem. Pharm. Bull. 2015, 63, 819−824.
(11) (a) Beukeaw, D.; Udomsasporn, K.; Yotphan, S. J. Org. Chem.
2015, 80, 3447−3454. (b) Aruri, H.; Singh, U.; Kumar, M.; Sharma,
S.; Aithagani, S. K.; Gupta, V. K.; Mignani, S.; Vishwakarma, R. A.;
Singh, P. P. J. Org. Chem. 2017, 82, 1000−1012.
(12) Margrey, K. A.; McManus, J. B.; Bonazzi, S.; Zecri, F.;
Nicewicz, D. A. J. Am. Chem. Soc. 2017, 139, 11288−11299.
(13) (a) Hill, C. L. Nature 1999, 401, 436−437. (b) Simándi, L. I.
Advances in Catalytic Activation of Dioxygen by Metal Complexes;
AUTHOR INFORMATION
Corresponding Author
■
Hiroki Iida − Department of Chemistry, Graduate School of
Natural Science and Technology, Shimane University, Matsue
Authors
Kazumasa Tanimoto − Department of Chemistry, Graduate
School of Natural Science and Technology, Shimane
University, Matsue 690-8504, Japan
2087
Org. Lett. 2021, 23, 2084−2088