Vol. 25, No. 4 (2013)
Ligand/complexes
Synthesis of Co(II), Ni(II), Cu(II), Mn(II) and Zn(II) Complexes with Schiff Base 2079
TABLE -2
IR AND ELECTRONIC SPECTRAL DATA
IR spectral data (cm-1)
Electronic spectral data (cm-1)
γ(O-H)
3426
3420
3416
3436
3411
3409
γ(C=N)
1618
1597
1593
1602
1594
1611
γ(M-N)
–
γ(M-O)
–
L
31347, 39, 524
[CoL2(H2O)2]
[NiL2(H2O)2]
[CuL2(H2O)2]
[MnL2(H2O)2]
[ZnL2(H2O)2]
568
554
574
560
564
460
480
440
460
450
35398, 32130, 27392, 23, 415
39122, 36626
38022, 37460, 36523
38759, 36496, 29525
38461, 35211
TABLE-3
ANTIMICROBIAL ACTIVITY OF SCHIFF BASE LIGAND AND COMPLEXES
Antimicrobial activity of
the ligand and complexes
Staphylococcus aureus
Pseudomonas aeruginosa
Candida albicans
Aspergillus niger
Ligand (L)
[CoL2(H2O)2]
[NiL2(H2O)2]
[CuL2(H2O)2]
[MnL2(H2O)2]
[ZnL2(H2O)2]
++
++
++
++
++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++
+++
+++
++
Standard = ciprofloxacin 5 µg/disc for bacteria; Nystatin = 100 units/disc for fungi. Highly active = +++ (inhibition zone > 15 mm); moderatively
active = ++ (inhibition zone > 10mm); slightly active = + (inhibition zone > 5 mm); Inactive = -- (inhibition zone < 5 mm).
to 6A1g → 4Eg(D)22. Zn(II) complex displays absorption bands at
REFERENCES
38461 and 35211 cm-1. This is due to ligand metal charge
1. S.A. WestCott, Transition Met. Chem., 30, 411 (2005).
transfer transition. The magnetic moment value of 1.96BM
2. Z.H. Chohah, M. Praveen and M. Ghaffar, Met. Based Drugs, 4, 267
(1997).
measured for the copper complex lies in the range expected
for d9 system.The presence of two unpaired electrons in Ni(II)
complex is confirmed from the value of magnetic moment of
3.4 BM. The Zn(II) complex is found to be diamagnetic as
expected.
3. De Clereq and F. Verpoort, Macromolecules, 35, 8943 (2002).
4. N.N. Gulerman, S. Rollas and H. Erdeniz, J. Pharm. Sci., 26, 1 (2001).
5. P. Tarasconi, R. Albertini, A. Bonati, P.P. Dall Aglio, P. Lunghi and S.
Pinelli, Bioinorg. Med. Chem., 8, 154 (2000).
6. M. Wang, L.F. Wang, Y.Z. Li, Q.X. Li, Z.D. Xu and D.Q. Qu, Transition
Met. Chem., 26, 307 (2001).
1
1H NMR spectra: The H NMR spectra of Schiff base
7. M. Ramesh, K.B. Chandrasekar and K.H. Reddy, Indian J. Chem., 9A,
1337 (2000).
and its complexes were recorded in DMSO (d6). The azomethine
proton (-CH=N-) in Schiff base appeared at δ = 8.94 ppm has
been shifted to downfield in metal complexes. This confirms
the coordination by azomethine nitrogen23. The aromatic
protons in Schiff base appeared in the range at δ 6.93-8.0 ppm
and metal complexes in the range δ 6.54-8.75 ppm24. The
disappearance of phenolic -OH proton signal at 12.65 ppm
confirms the coordination by phenolic oxygen to metal ion.
Antimicrobial activity: Antibacterial and antifungal
activity of Schiff base ligand and its cobalt, nickel, copper,
manganese and zinc complexes have been tested by disc diffu-
sion technique25. The various gram positive and gram negative
bacterial organisms such as gram negative bacteria Pseudomonas
aeruginosa, gram positive bacteria Staphylococcus aureus and
fungi Aspergillus niger and Candida albicans are used to find
out the antimicrobial activity (Table-3). Filter paper discs of
diameter 6 mm were used and the diameters of zones of inhibi-
tion formed around each disc after incubating for a period of
72 h at 25-30 ºC were recorded. Results were compared with
standard drug Ciprofloxacin for bacteria and Nystatin for fungi
at the same concentration. All the new complexes showed a
remarkable biological activity against bacteria and fungus.
From the results it is clear that the metal complexes are found
to have more antimicrobial activity than the parent ligand.
8. J. Mannad and J.C. Crabbe, Bacterial and Antibacterial agents, Spectrum
Academic Publishers, Oxford (1996).
9. R. Raveendran and S. Pal, J. Organomet. Chem., 692, 824 (2007).
10. P.P. Dholakiya and M.N. Patel, Synth. React. Inorg.-Met. Org. Chem.,
34, 553 (2004).
11. C.R. Choudhury, S.K. Day, N. Mondal, S. Mitra, S.O.G. Mahalliand
and K.M.A. Malik, J. Chem. Crystallogr., 31, 57 (2002).
12. W.J. Geary, Coord. Chem. Rev., 7, 81 (1971).
13. R.K. Upadhyay, J. Indian Chem. Soc., 74, 535 (1977).
14. L.N. Sharda and M.C. Ganokar, Indian J. Chem., 27A, 617 (1988).
15. V. Chinuusamy and K. Natarjan, Synth. React. Inorg.-Met. Org. Nanomet.
Chem., 23, 889 (1993).
16. V.L. Chavan and B.H. Mehta, Asian J. Chem., 22, 5976 (2010).
17. J.H. Deshmukh and M.N. Deshpande, Asian J. Chem., 22, 5961 (2010).
18. K. Nakamota, Infra Red and Raman spectra of Inorganic Co-Ordination
compounds, New York, Wiley & Sons, p. 229 (1998).
19. B.P. Ghargava, R. Bembi and M. Tyagu, J. Indian Chem. Soc., 60, 214
(1983).
20. R.C. Maurya and P. Patel, Spectrosc. Lett., 32, 213 (1999).
21. R.C. Maurya, D.D. Mishra, S. Mukherjee and J. Dubey, Polyhedron,
14, 1351 (1995).
22. J.D. Lee, Concise Inorganic Chemistry, Blackwell Science Publishers,
Reprint, edn. 5, p. 967 (1999).
23. H.R. Singh and B.V. Agarwala, J. Indian Chem. Soc., 65, 591 (1988).
24. B.V.Agarwala, S. Hingorani,V. Puri, C.L. Khetrapal and G.A. Nagangowda,
Transition Met. Chem., 19, 25 (1994).
25. A. Rahman, M.I. Choudhary and W.J. Thomsen, Bioassay Techniques
for Drug Development, Harwood Academic Publishers, Netherlands
(2001).
ACKNOWLEDGEMENTS
The authors express their gratitude to UGC-SERO,
Hyderabad for financial assistance.