2562
L. Lin et al.
LETTER
(3) (a) Yet, L. Angew. Chem. Int. Ed. 2001, 40, 875. (b) Gröger,
H. Chem. Rev. 2003, 103, 2795. (c) Wang, J.; Liu, X.; Feng,
X. Chem. Rev. 2011, 111, 6947.
OH
OBn
OBn
i, ii, iii
iv
(4) (a) Saito, S.; Tsubogo, T.; Kobayashi, S. J. Am. Chem. Soc.
2007, 129, 5364. (b) Zhao, L.; Li, C.-J. Angew. Chem. Int.
Ed. 2008, 47, 7075. (c) Hirner, S.; Panknin, O.; Edefuhr, M.;
Somfai, P. Angew. Chem. Int. Ed. 2008, 47, 1907. (d) Xie, J.;
Huang, Z.-Z. Angew. Chem. Int. Ed. 2010, 49, 10181.
(5) (a) Luo, Y.-C.; Zhang, H.-H.; Wang, Y.; Xu, P.-F. Acc.
Chem. Res. 2010, 43, 1317. (b) See also ref. 2b and
references cited therein
(6) For selected examples, see: (a) Ferraris, D.; Young, B.;
Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548.
(b) Ji, J.-X.; Wu, J.; Chan, A. S. C. Proc. Natl. Acad. Sci.
U.S.A. 2005, 102, 11196. (c) Enders, D.; Seppelt, M.; Beck,
T. Adv. Synth. Catal. 2010, 352, 1413. (d) Huang, G.; Yang,
J.; Zhang, X. Chem. Commun. 2011, 47, 5587.
CHO
X
ZnX⋅MgCl2⋅LiCl
2m: X = Cl; 2n: X = Br
4
5a: X = Cl
5b: X = Br
v
O
O
S
t-Bu
CO2H
S
t-Bu
CO2Et
HN
HN
vi
BnO
BnO
3m
6
Scheme 1 2′,6′-Dimethyl tyrosine synthesis. Reagents and condi-
tions: (i) BnBr, K2CO3, acetone, reflux, 3 h; (ii) NaBH4, MeOH, 0 °C,
92% yield from phenol aldehyde 4; (iii) 5a: SOCl2, 1 h in CH2Cl2,
98%; 5b: CBr4, Ph3P, 1 h in THF, 90%; (iv) Mg, ZnCl2/LiCl
(1.1 M/1.5 M in THF), 3 h, 0.45 M for 2m, 0.22 M for 2n; (v) 2n (1.2
equiv), (S)-1 (10 mmol), –78 °C, 30 min, dr 98:2, 70%; (vi) LiOH (1
M, THF–H2O), overnight at r.t., 90%.
(7) Dickstein, J. S.; Kozlowski, M. C. Chem. Soc. Rev. 2008, 37,
1166.
(8) For reviews, see: (a) Ellman, J. A.; Owens, T. D.; Tang, T.
P. Acc. Chem. Res. 2002, 35, 984. (b) Ferreira, F.; Botuha,
C.; Chemla, F.; Perez-Luna, A. Chem. Soc. Rev. 2009, 38,
1162. (c) Lin, G.-Q.; Xu, M.-H.; Zhong, Y.-W.; Sun, X.-W.
Acc. Chem. Res. 2008, 41, 831. (d) Robak, M. T.; Herbage,
M. A.; Ellman, J. A. Chem. Rev. 2010, 110, 3600.
(9) (a) Davis, F. A.; McCoull, W. J. Org. Chem. 1999, 64, 3396.
(b) Grigg, R.; McCaffrey, S.; Sridharan, V.; Fishwick, C. W.
G.; Kilner, C.; Korn, S.; Bailey, K.; Blacker, J. Tetrahedron
2006, 62, 12159. (c) Andreassen, T.; Hansen, L.-K.; Gautun,
O. R. Eur. J. Org. Chem. 2008, 4871. (d) Sun, X.; Zheng,
W.; Wei, B.-G. Tetrahedron Lett. 2008, 49, 6195. (e) Gu, C.-
L.; Liu, L.; Wang, D.; Chen, Y.-J. J. Org. Chem. 2009, 74,
5754. (f) Reddy, L. R.; Gupta, A. P.; Liu, Y. J. Org. Chem.
2011, 76, 3409.
(10) (a) Beenen, M. A.; Weix, D. J.; Ellman, J. A. J. Am. Chem.
Soc. 2006, 128, 6304. (b) Dai, H.; Lu, X. Org. Lett. 2007, 9,
3077. (c) Dai, H.; Yang, M.; Lu, X. Adv. Synth. Catal. 2008,
350, 249. (d) Li, Y.; Ji, D. M.; Xu, M. H. Org. Biomol.
Chem. 2011, 9, 8452.
(11) For selected examples, see: (a) Metzger, A.; Bernhardt, S.;
Manolikakes, G.; Knochel, P. Angew. Chem. Int. Ed. 2010,
49, 4665. (b) Boudet, N.; Sase, S.; Sinha, P.; Liu, C.-Y.;
Krasovskiy, A.; Knochel, P. J. Am. Chem. Soc. 2007, 129,
12358. (c) Piller, F. M.; Appukkuttan, P.; Gavryushin, A.;
Helm, M.; Knochel, P. Angew. Chem. Int. Ed. 2008, 47,
6802.
In conclusion, we have developed a facile, convenient, re-
liable, and inexpensive synthesis of chiral α-amino acids
using N-tert-butanesulfinyl as the chiral auxiliary. The ad-
dition of various multi-metallic benzyl zinc halides to N-
tert-butanesulfinyl imino ester gave N-tert-butanesulfinyl
amino esters with high yields and excellent diastereose-
lectivities. The amino or carboxyl group of the addition
product can be selectively deprotected under very mild
conditions. Because N-tert-butanesulfinyl amino acids
can be considered as N-Boc-α-amino acids alternatives,
the present approach is potentially very important in pep-
tide synthesis. The protected sterically constrained (S)-
Dmt derivative was also readily prepared from inexpen-
sive and commercially available starting material through
simple steps with a high overall yield on a multigram
scale. Applying the unnatural chiral α-amino acids to re-
lated peptide SAR improvement is under investigation.
(12) For detailed comparisons of these reagents, see: Piller, F. M.;
Metzger, A.; Schade, M. A.; Haag, B. A.; Gavryushin, A.;
Knochel, P. Chem.–Eur. J. 2009, 15, 7192.
(13) Addition of these reagents to sulfinyl imine was reported
very recently, see: Buesking, A. W.; Baguley, T. D.; Ellman,
J. A. Org. Lett. 2011, 13, 964.
Acknowledgment
We gratefully acknowledge financial support from NSFC (nos.
21002043, 20932003, and 90813012), and the Key National S & T
Program ‘Major New Drug Development’ of the Ministry of Sci-
ence and Technology (2012ZX09504001-003).
(14) Synthesis of α-trifluoromethyl α-amino acids via the
addition of type I Knochel reagent to (R)-phenylglycinol
methyl ether based imines of trifluoropyruvate has been
reported very recently, see: Yang, J.; Min, Q.-Q.; He, Y.;
Zhang, X. Tetrahedron Lett. 2011, 52, 4675.
Supporting Information for this article is available online at
m
o
ti
(15) For selected reviews, see: (a) Bryant, S. D.; Jinsmaa, Y.;
Salvadori, S.; Okada, Y.; Lazarus, L. H. Peptide Sci. 2003,
71, 86. (b) Hoye, A. T.; Davoren, J. E.; Wipf, P.; Fink, M. P.;
Kagan, V. E. Acc. Chem. Res. 2008, 41, 87.
(16) For selected examples, see: (a) Harrison, B. A.; Pasternak,
G. W.; Verdine, G. L. J. Med. Chem. 2003, 46, 677.
(b) Berezowska, I.; Chung, N. N.; Lemieux, C.; Wilkes, B.
C.; Schiller, P. W. J. Med. Chem. 2009, 52, 6941.
(c) Yamamoto, T.; Nair, P.; Largent-Milnes, T. M.;
Jacobsen, N. E.; Davis, P.; Ma, S.-W.; Yamamura, H. I.;
References
(1) Liu, W. X.; Wang, R. Med. Res. Rev. 2012, 32, 536.
(2) (a) Nájera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584.
(b) See the preface in: Soloshonok, V. A.; Izawa, K.
Asymmetric Synthesis and Application of α-Amino Acids;
Vol. 1009; American Chemical Society: Washington DC,
2009.
Synlett 2012, 23, 2559–2563
© Georg Thieme Verlag Stuttgart · New York