F. Yang et al. / Tetrahedron Letters 54 (2013) 409–413
413
neat compound
OR
OR
ORRO
OR
OR
RO
RO
(a)calixarenes bowlic column with two triphenylene
units as ancillary lateral columns
ORRO
OH
O
O
O
Ag+
OH
O
Ag+
Ag+
complex with Ag+
But
But
But
But
(b) triphenylene column with calixarene
units on ancillary lateral side
Figure 8. Two kinds of schematic representation of the columnar layered molecular arrangement for triads of triphenylene-calixarene-triphenylenes 6a and 6b before and
after complexation.
6. Kumar, S. Liq. Cryst. 2004, 31, 1037–1059.
7. Gupta, S. K.; Raghunathan, V.; Kumar, S. New. J. Chem. 2008, 33, 112–117.
8. Bisoyi, H. K.; Kumar, S. Tetrahedron Lett. 2008, 49, 3628–3631.
bowlic columnar phase. As a result, the complexes adopt novel
molecular stacking behaviors of triphenylene column with calixa-
rene units on ancillary lateral sides to avoid the steric hindrance.
These interesting ion complexation-induced mesomorphic conver-
sions between two columnar phases were observed for the first
time in supramolecular chemistry and might be applied in ion-
selective supramolecular liquid crystals, ion-induced switch of li-
quid crystal, etc.
In conclusion, the design and synthesis of novel symmetrical
triads of triphenylene-calix[4]arene-triphenylenes 6a and 6b
bridged by hydrazone spacers were described in good yields. Their
mesophase behaviors were studied by differential scanning calo-
rimetry, polarizing optical microscopy, and X-ray diffraction. They
exhibited interesting ion complexation-induced mesomorphic
conversion between two columnar phases. The neat compounds
6a and 6b showed mesophase with calixarene’s bowlic column
as cores. But their Ag+-complexes exhibited mesophase with tri-
phenylene column as cores. The influences on mesomorphic prop-
erties by complexation with other ions will be further investigated
deeply in following works.
9. Li, J.; He, Z.; Gopee, H.; Cammidge, A. N. Org. Lett. 2010, 12, 472–475.
10. Zhang, L.; Gopee, H.; Hughes, D.; Cammidge, A. N. Chem. Commun. 2010, 46,
4255–4257.
11. Wang, D.; Hsu, J. F.; Bagui, M.; Dusevich, V.; Wang, Y.; Liu, Y.; Holder, A.; Peng,
Z. Tetrahedron Lett. 2009, 50, 2147–2149.
12. Kaller, M.; Deck, C.; Meister, A.; Hause, G.; Baro, A.; Laschat, S. Chem. Eur. J.
2010, 16, 6326–6337.
13. Kaller, M.; Tussetschläger, S.; Fischer, P.; Deck, C.; Baro, A.; Giesselmann, F.;
Laschat, S. Chem. Eur. J. 2009, 15, 9530–9542.
14. Kaller, M.; Staffeld, P.; Haug, R.; Frey, W.; Giesselmann, F.; Laschat, S. Liq. Cryst.
2011, 38, 531–553.
15. Jiang, L.; Engle, J.; Sirk, L.; Hartley, C.; Ziegler, C.; Wang, H. Org. Lett. 2011, 13,
3020–3023.
16. Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J. Calixarenes 2001; Kluwer
Academic Publishers: Dordrecht, 2001.
17. Casnati, A.; Sansone, F.; Ungaro, R. Calixarene receptors in ion recognition and
sensing, in advances in supramolecular chemistry; Cerberus Press Inc.: South
Miami, FL, 2004.
18. Kohmoto, S.; Someya, Y.; Masu, H.; Yamaguchi, K.; Kishikawa, K. J. Org. Chem.
2006, 71, 4509–4515.
19. Cometti, G.; Dalcanale, E.; Vosel, A. D.; Levelut, A. M. J. Chem. Soc., Chem.
Commun. 1990, 2, 163–165.
20. Bonsignore, S.; Cometti, G.; Dalcanale, E.; Vosel, A. D. Liq. Cryst. 1990, 8, 639–
649.
21. Chen, P. K. Lo. D.; Chen, P. K.; Meng, Q.; Wong, M. S. Chem. Mater. 2006, 18,
3924–3930.
22. Budig, H.; Diele, S.; Paschke, R.; Ströhl, D.; Tschierske, C. J. Chem. Soc., Perkin
Trans. 2 1996, 9, 1901–1906.
Acknowledgments
Financial support from the NSFC (No: 20402002), the FNSFC
(No. 2011J01031), the Project of Fujian provincial department of
education(JA11044), and Program for Excellent young researchers
in University of Fujian Province (JA10056) were greatly
acknowledged.
23. Koh, K. N.; Araki, K.; Komori, T.; Shinkai, S. Tetrahedron Lett. 1995, 36, 5191–
5194.
24. Yang, F. F.; Guo, H. Y.; Xie, J. W.; Lin, J. R. Eur. J. Org. Chem. 2011, 26, 5141–5145.
25. Yang, F. F.; Xu, B. T.; Guo, H. Y.; Xie, J. W. Tetrahedron Lett. 2012, 53, 1598–1602.
26. Kumar, S.; Pal, S. K. Tetrahedron Lett. 2005, 46, 4127–4130.
27. Yang, F. F.; Hong, B. Q.; Chai, X. F.; Yin, F. J.; Chen, Y. Y. Supramol. Chem. 2009,
21, 691–698.
28. Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S. J.; Kaitner, B.;
Marques, E.; Schwing-Weill, M. J.; Seward, E. M. J. Am. Chem. Soc. 1989, 111,
8190–8681.
Supplementary data
29. Prasad, S. K.; Rao, A. S.; Chandrasekhar, S.; Kumar, S. Mol. Cryst. Liq. Cryst. 2003,
396, 121–139.
Supplementary data associated with this article can be found,
30. Wan, W.; Wang, P. Y.; Jiang, H. Z.; Hao, J. Mol. Cryst. Liq. Cryst. 2008, 482, 42–46.
31. Wan, W.; Monobe, H.; Tanaka, Y.; Shimizu, Y. Liq. Cryst. 2003, 30, 571–578.
32. Ba, C.; Shen, Z.; Gu, H.; Guo, G.; Xie, P.; Zhang, R. Liq. Cryst. 2003, 30, 391–397.
33. Paraschiv, J.; Tomkinson, A.; Giesbers, M.; Sudhölter, E.; Zuilhof, H.; Marcelis, A.
Liq. Cryst. 2007, 34, 1029–1038.
References and notes
34. Zhao, B.; Liu, B.; Png, R. Q.; Zhang, K.; Lim, K. A.; Luo, J.; Shao, J.; Ho, P.; Chi, C.;
Wu, J. Chem. Mater. 2010, 22, 435–449.
1. Sergeyev, S.; Pisula, W.; Geerts, Y. H. Chem. Soc. Rev. 2007, 36, 1902–1929.
2. Laschat, S.; Baro, A.; Steinke, N.; Giesselmann, F.; Hagele, C.; Scalia, G.; Judele,
R.; Kapatsina, E.; Sauer, S.; Schreivogel, A.; Tosoni, M. Angew. Chem., Int. Ed.
2007, 46, 4832–4887.
3. Kato, T.; Mizoshita, N.; Kishimoto, K. Angew. Chem., Int. Ed. 2006, 45, 38–68.
4. Kumar, S. Chem. Soc. Rev. 2006, 35, 83–109.
35. Yonetake, K.; Nakayama, T.; Ueda, M. J. Mater. Chem. 2001, 11, 761–767.
36. Komori, T.; Shinkai, S. Chem. Lett. 1993, 8, 1455–1458.
37. Xu, B.; Swager, T. M. J. Am. Chem. Soc. 1993, 115, 1159–1160.
38. Xu, B.; Swager, T. M. J. Am. Chem. Soc. 1995, 117, 5011–5012.
39. Patel, R. V.; Panchal, J. G.; Rana, V. A.; Menon, S. K. J. Incl. Phenom. Macrocycl.
Chem. 2010, 66, 285–295.
5. Kumar, S. Liq. Cryst. 2005, 32, 1089–1113.