ACS Medicinal Chemistry Letters
Letter
memory processing of inhibitory avoidance learning. NeuroReport 1996,
7, 585−588.
(5) Blokland, A.; Menniti, F. S.; Prickaerts, J. PDE Inhibition and
cognition enhancement. Expert Opin. Ther. Pat. 2012, 22, 349−354.
(6) Lakics, V.; Karran, E. H.; Boess, F. R. Quantitative comparison of
phosphodiesterase mRNA distribution in human brain and peripheral
tissues. Neuropharmacology 2010, 59, 367−374.
(7) Rutten, K.; Prickaerts, J.; Hendrix, M.; van der Staay, F.-J.; Sik, A.;
Blokland, A. Time-dependent involvement of cAMP and cGMP in
consolidation of object memory: Studies using selective phosphodies-
terase type 2, 4 and 5 inhibitors. Eur. J. Pharmacol. 2007, 558, 107−112.
(8) Prickaerts, J.; de Vente, J.; Honig, W.; Steinbusch, H. W.; Blokland,
A. cGMP, but not cAMP, in rat hippocampus is involved in early stages
of object memory consolidation. Eur. J. Pharmacol. 2002, 436, 83−87.
(9) Boess, F. G.; Hendrix, M.; van der Staay, F.-J.; Erb, C.; Schhreiber,
R.; van Staveren, W.; de Vente, J.; Prickaerts, J.; Blokland, A.; Koenig, G.
Inhibition of phosphodiesterase 2 increases neuronal cGMP, synaptic
plasticity and memory performance. Neuropharmacology 2004, 47,
1081−1092.
In summary, structure-based design optimized a series of
[1,2,4]triazolo[4,3-a]quinoxalines for their activity against PDE2
and selectivity versus PDE10. Crystallographic structures along
with docking of known selective molecules provided rationale for
synthesis. The most selective example, 12, displayed 10.1 nM
inhibition against PDE2, >210-fold selectivity versus PDE10 and
PDE11, and was inactive against other PDEs. X-ray crystallog-
raphy confirmed our design hypotheses that 12 accesses an
unusual ligand-induced lipophilic pocket. Molecule 12 displayed
an acceptable in vitro ADME and physicochemical profile and
good brain exposure. More importantly, 12 showed target
engagement by occupying PDE2 and increasing cyclic nucleotide
levels in relevant rat brain regions. Molecule 12 thus represents a
valuable probe compound for further studies of the role of PDE2
in central nervous system related disorders.
ASSOCIATED CONTENT
* Supporting Information
■
S
(10) Rodefer, J. S.; Saland, S. K.; Eckrich, S. J. Selective
phosphodiesterase inhibitors improve performance on the ED/ID
cognitive task in rats. Neuropharmacology 2012, 62, 1182−1190.
(11) Reneerkens, O. A.; Rutten, K.; Bollen, E.; Hage, T.; Blokland, A.;
Steinbusch, H. W. M.; Prickaerts, J. Inhibition of phoshodiesterase type
2 or type 10 reverses object memory deficits induced by scopolamine or
MK-801. J. Behav. Brain Res. 2013, 236, 16−22.
Docking protocols for Bay 60-7550 (1), protocols of in vitro
hPDE2 inhibitory activity of final compounds 4−13, in vitro PDE
profile of 12, in vivo PDE2 occupancy method, in vivo cAMP and
cGMP measurements in striatum and hippocampus, brain tissue
binding, plasma tissue binding, synthesis procedures, and
characterization. This material is available free of charge via the
́
(12) Andres, J.-I.; Buijnsters, P.; De Angelis, M.; Langlois, X.;
Rombouts, F.; Trabanco, A. A.; Vanhoof, G. Discovery of a new series of
[1,2,4]triazolo[4,3-a] quinoxalines as dual phosphodiesterase 2/
phosphodiesterase 10 (PDE2/PDE10) inhibitors. Bioorg. Med. Chem.
Lett. 2013, 23, 785−790.
AUTHOR INFORMATION
Corresponding Author
■
(13) Pandit, J.; Forman, M. D.; Fennell, K. F.; Dillman, K. S.; Menniti,
F. S. Mechanism for the allosteric regulation of phosphodiesterase 2A
deduced from the X-ray structure of a near full-length construct. Proc.
Natl. Acad. Sci. U.S.A. 2009, 106, 18225−18230.
(14) Iffland, A.; Kohls, D.; Low, S.; Luan, J.; Zhang, Y.; Kothe, M.; Cao,
Q.; Kamath, A. V.; Ding, Y. H.; Ellenberger, T. Structural determinants
for inhibitor specificity and selectivity in PDE2A using the wheat germ in
vitro translation system. Biochemistry 2005, 44, 8312−8325.
(15) Zhu, J.; Yang, Q.; Dai, D.; Huang, Q. X-ray crystal structure of
phosphodiesterase 2 in complex with a highly selective, nanomolar
inhibitor reveals a binding-induced pocket important for selectivity. J.
Am. Chem. Soc. 2013, 135, 11708−11711.
(16) Chappie, T. A.; Humphrey, J. M.; Allen, M. P.; Estep, K. G.; Fox,
C. B.; Lebel, L. A.; Liras, S.; Marr, E. S.; Menniti, F. S.; Pandit, J.;
Schmidt, C. J.; Tu, M.; Williams, R. D.; Yang, F. V. Discovery of a series
of 6,7-dimethoxy-4-pyrrolidylquinazoline PDE10A inhibitors. J. Med.
Chem. 2007, 50, 182−185.
(17) Andres, J.-I.; Buijnsters, P.; De Angelis, M.; Langlois, X.;
Rombouts, F.; Tranbanco, A. A.; Vanhoof, G.; Guillemont, J.; Bormans,
G.; Celen, S.; Vliegen, M. Preparation of (un)labeled 1-aryl-4-methyl-
[1,2,4]triazolo[4,3-a]quinoxaline derivatives as PDE2 and PDE10
inhibitors for therapy and imaging. PCT Int. Appl. WO 2013000924 A1.
(18) Suvarna, N. U.; O’Donnell, J. M. Hydrolysis of N-methyl-D-
aspartate receptor stimulated cAMP and cGMP by PDE4 and PDE2
phosphodiesteases in primary neuronal cultures of rat cerebral cortex
and hippocampus. J. Pharmacol. Exp. Ther. 2002, 302, 249−256.
Author Contributions
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the
manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
Lieve Heylen kindly provided support with the retrieval of all in
vitro and in vivo data. We also thank Ilse Lenaerts for performing
the occupancy experiments. We thank the ADME-Toxicology
department for performing all the ADME experiments.
ABBREVIATIONS
■
AUC0‑inf, area under the curve until infinite time; Cl, clearance;
CYP450, cytochrome P450; ED50, dose giving 50% effect; HP-β-
CD, (2-hydroxypropyl)-beta-cyclodextrin; hLM, human liver
microsomes; IC50, concentration giving 50% inhibition; i.v.,
intravenous; pdb, Protein Databank; PK, pharmacokinetic; p.o.,
per os; s.c., subcutaneous; SD, standard deviation; rLM, rat liver
microsomes; t1/2, half-life; tmax, time at maximum concentration;
Vdss, steady-state volume of distribution
REFERENCES
■
(1) Maurice, D. H.; Ke, H.; Ahmad, F.; Wang, Y.; Chung, J.;
Manganiello, V. C. Advances in targeting cyclic nucleotide phospho-
diesterases. Nat. Rev. Drug Discovery 2014, 13, 290−314.
(2) Frey, U.; Huang, Y. Y.; Kandel, E. R. Effects of cAMP simulate a late
stage of LTP in hippocampal CA1 neurons. Science 1993, 260, 1661−
1664.
(3) Son, H.; Lu, Y. F.; Zhuo, M.; Arancio, O.; Kandel, E. R. The specific
role of cGMP in hippocampal LTP. Learn. Mem. 1998, 5, 231−245.
(4) Bernabeau, R.; Schmitz, P.; Faillace, M. P.; Izquierdo, I.; Medina, J.
H. Hippocampal cGMP and cAMP are differentially involved in
1053
dx.doi.org/10.1021/ml500262u | ACS Med. Chem. Lett. 2014, 5, 1049−1053