complexes with SAL, GLY, MAL alone and mixed with 2-apym,
including SAL/2-apym, GLY/2-apym and MAL/2-apym systems,
but weak complexes with 2-apym. Fig. 13a–c and Table 6 show for
Cu/2-apym/SAL/GLY/MAL binary systems, the most likely
species are: CuQ, CuQH, CuQH22, CuL, CuL2, CuL2H, CuL9,
the computing centre of the Friedrich-Schiller Universita¨t Jena
(URZ), Jena, Germany for supplying their Cray XD1 (officer:
Sabine Irmer) for performing the computational research part.
References
CuL92, CuL92H, CuL9H21, CuL99, CuL992, CuL99H21 and
1 J. D. van der Waals, PhD thesis, University of Leiden, Leiden, The
Netherlands, 1873.
2 G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological
Structures, Springer-Verlag, Berlin, 1991.
3 (a) R. A. Kumpf and D. A. Dougherty, Science, 1993, 261, 1708; (b)
L. Heginbotham, Z. Lu, T. Abramson and R. Mackinnon, Biophys.
J., 1994, 66, 1061.
4 (a) S. Demeshko, S. Dechert and F. Meyer, J. Am. Chem. Soc., 2004,
126, 4508; (b) B. L. Schottel, J. Bacsa and K. R. Dunbar, Chem.
Commun., 2005, 46; (c) Y. S. Rosokha, S. V. Lindeman, S. V.
Rosokha and J. K. Kochi, Angew. Chem., Int. Ed., 2004, 43, 4650; (d)
P. de Hoog, P. Gamez, I. Mutikainen, U. Turpeinen and J. Reedijk,
Angew. Chem., Int. Ed., 2004, 43, 5815; (e) A. Frontera, F. Saczewski,
M. Gdaniec, E. Dziemidowicz-Borys, A. Kurland, P. M. Deya, D.
Quin˜onero and C. Garau, Chem.–Eur. J., 2005, 11, 6560; (f) G. Gil-
Ramirez, J. Benet-Buchholz, E. C. Escudero-Adan and P. Ballester,
J. Am. Chem. Soc., 2007, 129, 3820.
CuL992H21. Fig. 15a–c and Table 6 revealed the formation of a
variety of ternary complexes between the Cu2+ ion and the cited
proton-transfer systems at different ranges of pH. The predominant
species for Cu/SAL/2-apym are: CuLQH (at pH 2.9–3.9),
CuL2Q2H (at pH 7.2) and CuL2Q2H2 (at pH 4.2–5.2), for Cu/
GLY/2-apym are: CuL9Q (at pH 5.4) and CuL9QH (at pH 3.7), for
Cu/MAL/2-apym are: CuL99QH (at pH 4.5–5.5) and CuL99QH2 (at
pH 2.1). The stoichiometries of the some of the most abundant
ternary complexes such as ML2Q2H2, ML9QH, ML99QH and
ML99QH2 existing in aqueous solution are very similar to those
reported for the corresponding isolated complexes in the solid state.
It should be pointed out that the complex formation is significantly
affected by the pH value of the reaction system. All ligands are
proton-acid or bases, and the reactions of them generate HCl as a
by-product. The pH value of each reaction mixture would be
informative for the understanding the relationship between the pH
value and the components of resulting products.
5 R. Bhattacharyya, U. Samanta and P. Chakrabarti, Protein Eng.,
2002, 15, 91 and references therein.
6 G. R. Desiraju, Angew. Chem., Int. Ed. Engl., 1995, 34, 2311.
7 K. Mu¨ller-Dethlefs and P. Hobza, Chem. Rev., 2000, 100, 143.
ˇ ˇ
8 K. E. Riley, M. Pitona´k, P. Jurecka and P. Hobza, Chem. Rev., 2010,
110, 5023.
9 B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629.
10 A. M. Shultz, O. K. Farha, J. T. Hupp and S. T. Nguyen, J. Am.
Chem. Soc., 2009, 131, 4204.
Conclusion
´
11 O. M. Yaghi, M. OKeeffe, N. W. Ockwig, H. K. Chae, M. Eddaoudi
and J. Kim, Nature, 2003, 423, 705.
Understanding of the essential roles of non-covalent interactions
in network formation as their stabilization energies could be
useful tools for designing new desired ligands within crystal
engineering. For this purpose, the smallest structure of networks
of compounds I, I9, and II containing a number of respective
monomers bearing all possible non-covalent interactions as input
files have been chosen. It should be pointed out that accurate
selection of these monomers for starting theoretical calculations
have essential contributions for better fitness of theoretical
outputs of structural parameters with the experimental ones.
Different non-covalent interactions, with the stabilization
12 S. Kitagawa and K. Uemura, Chem. Soc. Rev., 2005, 34, 109.
13 X. M. Chen and M. L. Tong, Acc. Chem. Res., 2007, 40, 162.
14 B. Zhang, D. Zhu and Y. Zhang, Chem.–Eur. J., 2010, 16, 9994.
15 W. Wei, M. Wu, Q. Gao, Q. Zhang, Y. Huang, F. Jiang and M.
Hong, Inorg. Chem., 2009, 48, 420.
16 L. A. Barrios, G. Arom´ı, A. Frontera, D. Quin˜onero, P. M. Deya`, P.
Gamez, O. Roubeau, E. J. Shotton and J. S. Teat, Inorg. Chem.,
2008, 47, 5873.
17 C. A. Black, L. R. Hanton and M. D. Spicer, Inorg. Chem., 2007, 46, 3669.
18 H. Chun and J. Seo, Inorg. Chem., 2009, 48, 9980.
19 H. Chun and N. Jin, Bull. Korean Chem. Soc., 2009, 30, 1405.
20 G. Yang, H.-G. B.-H. Zhu and X.-M. L. Chen, J. Chem. Soc., Dalton
Trans., 2001, 580.
…
…
…
sequence of H-bond . C–H p . N–H p . p p have been
21 Z.-P. Deng, L.-H. Huo, M.-S. Li, L.-W. Zhang, Z.-B. Zhu, H. Zhao
and S. Gao, Cryst. Growth Des., 2011, 11, 3090.
22 (a) M. Mirzaei, H. Aghabozorg and H. Eshtiagh-Hosseini, J. Iran.
Chem. Soc., 2011, 8, 580 and references therein; (b) M. Mirzaei, H.
found in the title networks. Inet and I9net contain 5 and 3
…
…
O
respective monomer respectively, bearing N–H N, N–H
…
and O–H N H-bonds, C–H p, and N–H p interactions. For
…
…
´
Eshtiagh-Hosseini, A. Hassanpoor, T. Szymanska-Buzar, J. T. Mague,
compounds II two networks (IInet1 and IInet2) contain 2
M. Korabik and A. Kochel, Inorg. Chim. Acta, 2012, 391, 232.
23 Z.-L. Xu, Y. He, S. Ma and X.-Y. Wang, Transition Met. Chem.,
2011, 36, 585.
24 G. R. Desiraju, Nature, 2001, 412, 397.
25 L. Bolundut, I. Haiduc, E. Ilyes, G. Kociok-Ko¨hn, K. C. Molloy and
S. Go´mez-Ruiz, Inorg. Chim. Acta, 2010, 363, 4319.
…
monomers bearing N–H Cl and N–H N H-bonds, and p p
…
…
interactions have been found. The calculated binding energies of
these non-covalent interactions indicated classical H-bonds play
the most important role in the network stabilization. The
protonation constants of SAL, GLY, MAL and 2-apym, the
building blocks of the proton-transfer systems including SAL/2-
apym, GLY/2-apym and MAL/2-apym fragments, and the
corresponding stability constants of these systems were deter-
mined by potentiometric study. Comparison of the proton-
transfer stability constants for the three proton-transfer systems
described reveals that the almost similar tendency between them.
Also these systems form stable complexes with Cu2+ ion.
26 A. Moghimi, R. Alizadeh, A. Shokrollahi, H. Aghabozorg, M.
Shamsipur and A. Shockravi, Inorg. Chem., 2003, 42, 1616.
27 K. Mu¨ller-Dethlefs and P. Hobza, Chem. Rev., 2000, 100, 143.
28 (a) Bruker, APEX II software package, v. 1.27, Bruker molecular
analysis research tool, Bruker AXS, Madison, WI, 2005; (b) Stoe &
Cie, X-AREA, Stoe & Cie, Darmstadt, Germany, 2005; (c) G. M.
Sheldrick, Acta Crystallogr., Sect. A: Fundam. Crystallogr., 2008, 64,
112; (d) G. M. Sheldrick, SADABS, v. 2.03, Bruker/Siemens area
detector absorption correction program. Bruker AXS, Madison, 2003;
(e) Bruker, SAINT, v. 6.2, Data reduction and correction program,
Bruker AXS, Madison, 2001; (f) G. M. Sheldrick, SHELXTL, v. 6.12,
Structure determination software suite, Bruker AXS, Madison, 2001.
29 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A.
Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F.
Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M.
Acknowledgements
The authors gratefully acknowledge the financial support by the
Ferdowsi University of Mashhad, Mashhad, Iran. We also thank
This journal is ß The Royal Society of Chemistry 2012
CrystEngComm, 2012, 14, 8468–8484 | 8483