616
S. Erdemir et al. / Tetrahedron Letters 54 (2013) 613–617
nitrogens and the naphthol –OH groups.17 However, the titration
experiments on the receptors S1 and S2 and tetrabutylammonium
fluoride in DMSO-d6 showed that the proton signals of the naph-
thol hydroxyl disappeared after the addition of 1.0 equiv of fluoride
and there was no appearance of proton signals due to this group
even after the addition of 2, 3, 4 and 5 equiv of fluoride. This dem-
onstrates formation of a new complex between the naphthol
hydroxyl and fluoride.
In summary, we have developed two novel colorimetric anion
sensors which selectively recognize fluoride over other anions
(AcOÀ, ClÀ, BrÀ, IÀ, NO3À, ClO4À, HSO4À, and H2PO4À) in acetonitrile.
More importantly, these chemosensors display naked-eye detec-
tion at room temperature. The nature of the anion receptor inter-
action has been defined by absorption and NMR spectroscopy,
and we have demonstrated that in the case of S1 and S2, deproto-
nation interactions are most likely involved in the recognition
process.
Figure 6. Partial 1H NMR spectra of S1 (7.24 Â 10À2 M) in DMSO-d6 at 25 °C and the
corresponding changes after the addition of various equivalents of tetrabutylam-
monium fluoride (2.0 Â 10À2 M).
Acknowledgements
We thank the Research Foundation of Selcuk University (BAP)
for financial support of this work.
Benesi–Hildebrand plots16 derived from the changes at 470 and
455 nm in the UV–vis spectra of S1 and S2 gave the association
constants. The association constants of FÀ with S1 and S2 were
calculated as 6.38 Â 103 and 1.11 Â 103 MÀ1 from the UV–vis
titrations (Supplementary data).
Supplementary data
Supplementary data associated with this article can be found,
In order to understand the effect of fluoride anions on the NH
and OH protons of the receptors S1 and S2, the 1H NMR spectra
were recorded in DMSO-d6. The urea NH and OH signals in receptor
S1 appeared at d 9.09 and d 13.95 (Fig. 6) and at d 9.20 and d 13.98
in receptor S2 (Fig. 7). The urea NH protons in S1 and S2 disap-
peared after the addition of 1.0 equiv of tetrabutylammonium
fluoride to the receptor solutions. The deprotonation of the urea
subunits in receptors S1 and S2 can induce two distinct effects
on the aromatic substituents: (i) it increases the electron density
on the phenyl rings with through bond propagation which gener-
ates a shielding effect, and should produce an upfield shift of the
C–H protons; (ii) it induces polarisation of the C–H bonds via a
through-space effect, where the partial positive charge causes a
deshielding effect and produces a downfield shift.
References and notes
1. (a) Lin, C.; Simov, V.; Drueckhammer, D. G. J. Org. Chem. 2007, 72, 1742; (b) Dos
Santos, C. M. G.; McCabe, T.; Gunnlaugsson, T. Tetrahedron Lett. 2006, 47, 5251;
(c) Pfeffer, F. M.; Seter, M.; Lewcenko, N.; Barnett, N. W. Tetrahedron Lett. 2006,
47, 5251.
2. (a) Garcia-Espana, E.; Diaz, P.; Llinares, J. M.; Bianchi, A. Coord. Chem. Rev. 2006,
250, 3004; (b) Katayev, E. A.; Ustynyuk, Y. A.; Sessler, J. L. Coord. Chem. Rev.
2006, 250, 2952.
3. (a) O’Neil, E. J.; Smith, B. D. Coord. Chem. Rev. 2006, 250, 3068; (b) Filby, M. H.;
Steed, J. W. Coord. Chem. Rev. 2006, 250, 3200; (c) Goetz, S.; Kruger, P. E. J. J.
Chem. Soc., Dalton Trans. 2006, 1277.
4. (a) Bao, X.; Zhou, Y. Sens Actuators, B 2010, 147, 434; (b) Chmielewski, M. J.;
Jurczak, J. Chem. Eur. J. 2005, 11, 6080; (c) Kondo, S.-I.; Hiraoka, Y.; Kurumatani,
N.; Yano, Y. Chem. Commun. 2005, 1720; (d) Xie, H.; Yi, S.; Wu, S. J. Chem. Soc.,
Perkin Trans. 2 1999, 2751; (e) Sessler, J. L.; An, D.; Cho, W.-S.; Lynch, V.;
Marquez, M. Chem. Eur. J. 2001, 2005, 11; (f) Chellappan, K.; Singh, N. J.; Hwang,
I.-C.; Lee, J. W.; Kim, K. S. Angew. Chem., Int. Ed. 2005, 44, 2899; (g) Nishiyabu,
R., ; Anzenbacher, P., Jr. J. Am. Chem. Soc. 2005, 127, 8270; (h) Kang, S. O.;
Linares, J. M.; Powell, D.; VanderVelde, D.; Bowman-James, K. J. Am. Chem. Soc.
2003, 125, 10152.
At the same time, the –OH protons of S1 and S2 appeared at
d
13.95 and d 13.98, downfield from their expected value
(d 10 ppm), owing to intramolecular H-bonding between the imine
5. (a) Boiocchi, M.; Boca, L. D.; Gomez, D. E.; Fabbrizzi, L.; Licchelli, M.; Monzani, E.
J. Am. Chem. Soc. 2004, 126, 16507; (b) Ayling, A. J.; Perez-Payan, M. N.; Davis, A.
P. J. Am. Chem. Soc. 2001, 123, 12716; (c) Werner, F.; Schneider, H.-J. Helv. Chim.
Acta 2000, 83, 465–478; (d) Snellink-Ruel, B. H. M.; Antonisse, M. M. G.;
Engbersen, J. F. J.; Timmerman, P.; Reinhoudt, D. N. Eur. J. Org. Chem. 2000, 1,
165–170.
6. (a) Liu, S. Y.; Fang, L.; He, Y. B.; Chan, W. H.; Yeung, K. T.; Cheng, Y. K.; Yang, R.
H. Org. Lett. 2005, 7, 5825–5828; (b) Gunnlaugsson, T.; Davis, A. P.; O’Brien, J. E.;
Glynn, M. Org. Biomol. Chem. 2005, 3, 48; (c) Kim, S. K.; Singh, N. J.; Kim, S. J.;
Swamy, K. M. K.; Kim, S. H.; Lee, K. H.; Kim, K. S.; Yoon, J. Tetrahedron 2005, 61,
4545.
7. Yoon, J.; Kim, S. K.; Singh, N. J.; Kim, K. S. Chem. Soc. Rev. 2006, 35, 355.
8. (a) Martinez-Manez, R.; Sancenon, F. Chem. Rev. 2003, 103, 4419; (b) Bondy, C.
R.; Loeb, S. J. Coord. Chem. Rev. 2003, 240, 77; (c) Gale, P. A. Coord. Chem. Rev.
2001, 213, 79; (d) Melaimi, M.; Gabbai, F. P. J. Am. Chem. Soc. 2005, 127, 9680;
(e) Thiagarajan, V.; Ramamurthy, P.; Thirumalai, D.; Ramakrishnan, V. T. Org.
Lett. 2005, 7, 657; (f) Burns, D. H.; Calderon-Kawasaki, K.; Kularatne, S. J. Org.
Chem. 2005, 70, 2803.
9. (a) Fillaut, J. L.; Andries, J.; Toupet, L.; Desvergne, J.-P. Chem. Commun. 2005,
2924; (b) Garcia, F.; Garcia, J. M.; Garcia-Acosta, B.; Martinez-Manez, R.;
Sancenon, F.; Soto, J. Chem. Commun. 2005, 2790; (c) Ghosh, T.; Maiya, B. G.;
Wong, M. W. J. Phys. Chem. A 2004, 108, 11249; (d) Anzenbacher, P., Jr.; Palacios,
M. A.; Jursikova, K.; Marquez, M. Org. Lett. 2005, 7, 5027; (e) Pfeffer, F. M.;
Buschgens, A. M.; Barnett, N. W.; Gunnlaugsson, T.; Kruger, P. E. Tetrahedron
Figure 7. Partial 1H NMR spectra of S2 (7.24 Â 10À2 M) in DMSO-d6 at 25 °C and the
corresponding changes after the addition of various equivalents of tetrabutylam-
monium fluoride (2.0 Â 10À2 M).