Communication
Organic & Biomolecular Chemistry
mixture, prior to the addition of dimethyl sulfide. Reduction
of the hydroperoxy residue of D to hemiketal E is followed
by acid catalysed rearrangement of the spirocycle and cis–
trans isomerisation of the double bond, to give the final
product 11 via intermediate F.
To summarise, an ambitious singlet oxygen-mediated
cascade reaction sequence has been successfully implemented
in a “real” system example, giving us rapid access (only 10
steps) to the complex and complete CDE-ring fragment of the
pectenotoxins. The cascade reaction sequence itself showcases
a remarkable increase in molecular complexity through an
easily implemented laboratory protocol and uses a green and
highly selective oxidant, thereby making it a powerful solution
to the intransigent problem of how to significantly improve
our efficiency when we seek to synthesise complex polyoxyge-
nated polycyclic molecules.
(c) T. Newhouse, P. S. Baran and R. W. Hoffmann, Chem.
Soc. Rev., 2009, 38, 3010.
4 (a) D. Noutsias, I. Alexopoulou, T. Montagnon and
G. Vassilikogiannakis, Green Chem., 2012, 14, 601;
(b) T. Montagnon, D. Noutsias, I. Alexopoulou, M. Tofi and
G. Vassilikogiannakis, Org. Biomol. Chem., 2011, 9, 2031;
(c) T. Montagnon, M. Tofi and G. Vassilikogiannakis, Acc.
Chem. Res., 2008, 41, 1001.
5 There is some deviation in the assignment of the E-ring in
the published pectenotoxin literature. When we refer to the
E-ring throughout this manuscript we are referring to the
E-ring as it is depicted in Fig. 1.
6 G. Vassilikogiannakis, I. Alexopoulou, M. Tofi and
T. Montagnon, Chem. Commun., 2011, 47, 259.
7 (a) D. A. Evans, H. A. Rajapakse and D. Stenkamp, Angew.
Chem., Int. Ed., 2002, 41, 4569; (b) D. A. Evans,
H. A. Rajapakse, A. Chiu and D. Stenkamp, Angew. Chem.,
Int. Ed., 2002, 41, 4573.
8 For a review covering PTX synthetic studies up to 2006, see:
(a) R. Halim and M. A. Brimble, Org. Biomol. Chem., 2006,
4, 4048. For later studies excluding DE-bicycle related work
which is covered in ref. 9–14, see: (b) R. V. Kolakowski and
L. J. Williams, Tetrahedron Lett., 2007, 48, 4761;
(c) D. Vellucci and S. D. Rychnovsky, Org. Lett., 2007, 9, 711;
(d) S. D. Lotesta, Y. Hou and L. J. Williams, Org. Lett., 2007,
9, 869; (e) A. M. Heapy, T. W. Wagner and M. A. Brimble,
Synlett, 2007, 2359; (f) A. M. Heapy and M. A. Brimble,
Tetrahedron, 2010, 66, 5424; (g) S. Joyasawal, S. D. Lotesta,
N. G. Akhmedov and L. J. Williams, Org. Lett., 2010, 12,
988; (h) J. E. Aho, A. Piisola, K. S. Krishnan and
P. M. Pihko, Eur. J. Org. Chem., 2011, 9, 1682;
(i) E. K. Kemppainen, G. Sahoo, A. Valkonen and
P. M. Pihko, Org. Lett., 2012, 14, 1086.
Acknowledgements
The research leading to these results has received funding
from the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007–2013)/ERC
Grant Agreement No. 277588. We also thank Prof. Robert
Stockman and Mr George Procopiou for their help in taking
HRMS.
Notes and references
1 For the original isolation, see: (a) T. Yasumoto, M. Murata,
Y. Oshima, M. Sano, G. K. Matsumoto and J. Clardy, Tetra-
hedron, 1985, 41, 1019. The pectenotoxin family has since
grown to include >20 members, for leading references, see:
(b) M. Murata, M. Sano, T. Iwashita, H. Naoki and
9 (a) J. E. Aho, E. Salomäki, K. Rissanen and P. M. Pihko,
Org. Lett., 2008, 10, 4179; (b) H. Helmboldt, J. E. Aho and
P. M. Pihko, Org. Lett., 2008, 10, 4183.
T. Yasumoto, Agric. Biol. Chem., 1986, 50, 2693; 10 S. Carley and M. A. Brimble, Org. Lett., 2009, 11, 563.
(c) T. Yasumoto and M. Murata, Chem. Rev., 1993, 93, 1897; 11 (a) D. P. Canterbury and G. C. Micalizio, Org. Lett., 2011,
(d) K. Sasaki, J. L. C. Wright and T. Yasumoto, J. Org.
Chem., 1998, 63, 2475; (e) C. O. Miles, A. L. Wilkins,
13, 2384; (b) O. Kubo, D. P. Canterbury and G. C. Micalizio,
Org. Lett., 2012, 14, 5748.
A. D. Hawkes, D. J. Jensen, A. I. Selwood, V. Beuzenberg, 12 G. C. Micalizio and W. R. Roush, Org. Lett., 2001, 3, 1949.
A. L. MacKenzie, J. M. Cooney and P. T. Holland, Toxicon, 13 (a) P. D. O’Connor, C. K. Knight, D. Friedrich, X. Peng and
2006, 48, 152. For determination of the absolute configur-
ation, see: (f) K. Sasaki, M. Satake and T. Yasumoto,
Biosci., Biotechnol., Biochem., 1997, 61, 1783.
2 (a) J. H. Jung, C. J. Sim and C.-O. Lee, J. Nat. Prod., 1995,
58, 1722; (b) I. Spector, F. Braet, N. R. Schochet and
M. R. Bubb, Microsc. Res. Tech., 1999, 47, 18; (c) F. Leira,
A. G. Cabadon, M. R. Vieytes, Y. Roman, A. Alfonso,
L. M. Botana, T. Yasumoto, C. Malaguti and G. P. Rossini,
L. A. Paquette, J. Org. Chem., 2007, 72, 1747; (b) D. Bondar,
J. Liu, T. Müller and L. A. Paquette, Org. Lett., 2005, 7, 1813.
14 (a) K. Fujiwara, Y. Aki, F. Yamamoto, M. Kawamura,
M. Kobayashi, A. Okano, D. Awakura, S. Shiga, A. Murai,
H. Kawai and T. Suzuki, Tetrahedron Lett., 2007, 48, 4523;
(b) K. Fujiwara, Y. Suzuki, N. Koseki, S.-I. Murata,
A. Murai, H. Kawai and T. Suzuki, Tetrahedron Lett., 2011,
52, 5589.
Biochem. Pharmacol., 2002, 63, 1979; (d) H. D. Chae, 15 A.
Kouridaki,
T.
Montagnon,
M.
Tofi
and
T. S. Choi, B. M. Kim, J. H. Jung, Y. J. Bang and D. Y. Shin,
G. Vassilikogiannakis, Org. Lett., 2012, 14, 2374.
Oncogene, 2005, 24, 4813; (e) H. D. Chae, B. M. Kim, 16 For this step, we were able to use the conditions developed
U. J. Yun and D. Y. Shin, Oncogene, 2008, 27, 4115.
3 (a) I. S. Young and P. S. Baran, Nat. Chem., 2009, 1, 193;
(b) T. Gaich and P. S. Baran, J. Org. Chem., 2010, 75, 4657;
by Pihko and coworkers (ref. 9a) and confirm that the
desired stereochemistry had been achieved by comparison
of our spectral data with those published by this group.
540 | Org. Biomol. Chem., 2013, 11, 537–541
This journal is © The Royal Society of Chemistry 2013