ORGANIC
LETTERS
2013
Vol. 15, No. 3
646–649
Distinctive Meta-Directing Group Effect for
Iridium-Catalyzed 1,1-Diarylalkene
Enantioselective Hydrogenation
Elizabeth N. Bess and Matthew S. Sigman*
Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City,
Utah 84112, United States
Received December 18, 2012
ABSTRACT
An iridium-catalyzed asymmetric hydrogenation of 1,1-diarylkenes is described. Employing a novel, modular phosphoramidite ligand, PhosPrOx,
in this transformation affords biologically relevant 1,1-diarylmethine products in good enantiomeric ratios (96.5:3.5 to 71:29). We propose that a
meta-directing group, 3,5-dimethoxyphenyl, is responsible for the observed enantioselection, the highest reported, to date, for iridium-catalyzed
hydrogenation of 1,1-diarylalkenes lacking ortho-directing groups.
For several years, we and others have taken a keen interest
in accessing the biologically relevant 1,1-diarylmethine
scaffold.1 Although several methods exist for effectively
accessing these molecules,2 approaches for their enantio-
selective synthesishavebeenlimited.2b,3 Of particular note,
Jarvo and co-workers have developed a nickel-catalyzed
stereospecific cross-coupling reaction whereby enantio-
merically enriched 1,1-diarylethers undergo inversion of
configuration in the process to afford similarly enriched
1,1-diarylmethines.3a,b Another attractive approach was
reported by Carreira and co-workers, where enantiomeri-
cally enriched β,β-diarylpropionaldehydes are converted
to 1,1-diarylmethines using a stereoretentive rhodium-
catalyzed decarbonylation protocol.3d We envisioned a
complementary method to access this important pharma-
cophore wherein the stereocenter is set in the key bond
forming event. Specifically, we wanted to develop an
enantioselective hydrogenation of 1,1-diarylmethylenes,
as this approach would be operationally simple and the
substrates would be easily accessed. Additionally, this
substrate class is especially challenging, as few examples
of high enantioselectivity have been reported for the
hydrogenation of 1,1-diarylalkenes.
ꢀ
(1) (a) Messaoudi, S.; Hamze, A.; Provot, O.; Treguier, B.; Rodrigo
De Losada, J.; Bignon, J.; Liu, J.-M.; Wdzieczak-Bakala, J.; Thoret, S.;
Dubois, J.; Brion, J.-D.; Alami, M. ChemMedChem 2011, 6, 488. (b)
Moree, W. J.; Li, B.-F.; Zamani-Kord, S.; Yu, J.; Coon, T.; Huang, C.;
Marinkovic, D.; Tucci, F. C.; Malany, S.; Bradbury, M. J.; Hernandez,
L. M.; Wen, J.; Wang, H.; Hoare, S. R. J.; Petroski, R. E.; Jalali, K.;
Yang, C.; Sacaan, A.; Madan, A.; Crowe, P. D.; Beaton, G. Bioorg.
Med. Chem. Lett. 2010, 20, 5874. (c) Liang, H.; Wu, X.; Yalowich, J. C.;
Hasinoff, B. B. Mol. Pharmacol. 2008, 73, 686. (d) Moriconi, A.; Cesta,
M. C.; Cervellera, M. N.; Aramini, A.; Coniglio, S.; Colagioia, S.;
Beccari, A. R.; Bizzarri, C.; Cavicchia, M. R.; Locati, M.; Galliera, E.;
Di Benedetto, P.; Vigilante, P.; Bertini, R.; Allegretti, M. J. Med. Chem.
2007, 50, 3984. (e) Barda, D. A.; Wang, Z.-Q.; Britton, T. C.; Henry,
S. S.; Jagdmann, G. E.; Coleman, D. S.; Johnson, M. P.; Andis, S. L.;
Schoepp, D. D. Bioorg. Med. Chem. Lett. 2004, 14, 3099. (f) Cheltsov,
A. V.; Aoyagi, M.; Aleshin, A.; Yu, E. C.-W.; Gilliland, T.; Zhai, D.;
Bobkov, A. A.; Reed, J. C.; Liddington, R. C.; Abagyan, R. J. Med.
Chem. 2010, 53, 3899.
Ingeneral, rhodium-, ruthenium-, and iridium-catalyzed
asymmetric hydrogenation reactions can be divided into
(3) (a) Greene, M. A.; Yonova, I. M.; Williams, F. J.; Jarvo, E. R.
Org. Lett. 2012, 14, 4293. (b) Taylor, B. L. H.; Swift, E. C.; Waetzig,
J. D.; Jarvo, E. R. J. Am. Chem. Soc. 2011, 133, 389. (c) Wang, X.;
Guram, A.; Caille, S.; Hu, J.; Preston, J. P.; Ronk, M.; Walker, S. Org.
Lett. 2011, 13, 1881. (d) Fessard, T. C.; Andrews, S. P.; Motoyoshi, H.;
Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 9331. (e) Wilkinson,
J. A.; Rossington, S. B.; Ducki, S.; Leonard, J.; Hussain, N. Tetrahedron
2006, 62, 1833. (f) Wilkinson, J. A.; Rossington, S. B.; Ducki, S.;
Leonard, J.; Hussain, N. Tetrahedron: Asymmetry 2004, 15, 3011. (g)
(2) (a) Pathak, T. P.; Sigman, M. S. Org. Lett. 2011, 13, 2774. (b)
Podhajsky, S. M.; Iwai, Y.; Cook-Sneathen, A.; Sigman, M. S. Tetra-
hedron 2011, 67, 4435. (c) Gligorich, K. M.; Iwai, Y.; Cummings, S. A.;
Sigman, M. S. Tetrahedron 2009, 65, 5074. (d) Iwai, Y.; Gligorich, K. M.;
Sigman, M. S. Angew. Chem., Int. Ed. 2008, 47, 3219. (e) Gligorich,K.M.;
Cummings, S. A.; Sigman, M. S. J. Am. Chem. Soc. 2007, 129, 14193.
ꢀ
Prat, L.; Dupas, G.; Duflos, J.; Queguiner, G.; Bourguignon, J.;
Levacher, V. Tetrahedron Lett. 2001, 42, 4515. (h) Hatanaka, Y.;
Hiyama, T. J. Am. Chem. Soc. 1990, 112, 7793.
r
10.1021/ol303465c
Published on Web 01/11/2013
2013 American Chemical Society