Journal of the American Chemical Society
Page 4 of 6
1
2
3
4
5
6
7
8
9
rangement (path a). Alternatively, the rearrangement
switching selectivity from [2,3]ꢀrearrangements to [1,2]ꢀ
rearrangements of allylic ylides that is controlled by the
ligand of the metal catalyst. Both reactions demonstrate
a broad substrate scope and functional group tolerance
of aryl and aliphatic allylic iodides. Mechanistic studies
are consistent with different mechanisms for the reꢀ
giodivergent rearrangements. We are currently exploring
enantioselective versions of these processes and their
application to the synthesis of complex target molecules.
products can be formed through a stepwise oxidative
addition/reductive elimination mechanism (path b),
which proceeds through interconverting copper(III)ꢀallyl
complexes 8, 9, and 10.7
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
We devised deuteriumꢀlabeled experiments to distinꢀ
guish between these two possible mechanisms (Scheme
2b). Diazoester 2b and deuterated allylic iodide 11 were
subjected to both reaction conditions. Terminal allylic
iodide 11 was selected to avoid any steric bias that may
exist for a substituted allylic iodide. Whereas the optiꢀ
mized [2,3]ꢀrearrangement conditions led to the forꢀ
mation of product 13 with fidelity in the transposition of
deuterium, the optimized [1,2]ꢀrearrangement conditions
yielded a mixture of deuterated products 12 and 13.
ASSOCIATED CONTENT
Supporting Information. Experimental procedures and
characterization data. This material is available free of
AUTHOR INFORMATION
Scheme 2. Mechanistic Studies
Corresponding Author
ACKNOWLEDGMENT
Financial support was provided by W. W. Caruth, Jr. Enꢀ
dowed Scholarship, Welch Foundation (Iꢀ1748), National
Institutes of Health (R01GM102604), National Science
Foundation (1150875), and Sloan Research Fellowship.
REFERENCES
1
(a) Ilardi, E. A.; Stivala, C. E.; Zakarian, A. Chem. Soc. Rev.
2009, 38, 3133ꢀ3148. (b) Sweeney, J. B. Chem. Soc. Rev. 2009, 38,
1027ꢀ1038. (c) SeashoreꢀLudlow, B.; Somfai, P. In Sigmatropic Re-
arrangements in Stereoselective Synthesis, John Wiley & Sons, Inc.:
2013; pp 475ꢀ499. (d) Jones, A. C.; May, J. A.; Sarpong, R.; Stoltz, B.
M. Angew. Chem., Int. Ed. 2014, 53, 2556ꢀ2591. (e) Molecular Rear-
rangements in Organic Synthesis; Rojas, C. M., Ed.; John Wiley &
Sons: New Jersey, 2016. (f) Pine, S. H. In Org. React.; Dauben, W.
G., Ed.; Wiley: Huntington, NY, 1970; Vol. 18, pp 403ꢀ464.
2 (a) Biswas, B.; Collins, S. C.; Singleton, D. A. J. Am. Chem. Soc.
2014, 136, 3740ꢀ3743, and references therein. (b) Biswas, B.; Singleꢀ
ton, D. A. J. Am. Chem. Soc. 2015, 137, 14244ꢀ14247. (c) West, T.
H.; Spoehrle, S. S. M.; Kasten, K.; Taylor, J. E.; Smith, A. D. ACS
Catal. 2015, 5, 7446ꢀ7479. (d) Hoffmann, R. W. Angew. Chem. Int.
Ed. 1979, 18, 563ꢀ572. (e) Brückner, R. In Comprehensive Organic
Synthesis; Fleming, I., Ed.; Pergamon: Oxford, 1991, pp 873ꢀ908.
Based on these experiments, we propose that the copꢀ
perꢀcatalyzed [2,3]ꢀrearrangement in the presence of
2,2′ꢀbipyridyl ligand L5 proceeds through a concerted
chargeꢀinduced rearrangement mechanism (path a), and
the copperꢀcatalyzed [1,2]ꢀrearrangement with monoꢀ
dentate phosphine ligand L11 proceeds through a copꢀ
per(III)ꢀallyl complex that is formed via a stepwise oxiꢀ
dative addition/reductive elimination mechanism (path
b). We hypothesize that the diminished σꢀdonicity of
2,2′ꢀbipyridyl ligand L5 decreases the reactivity of metꢀ
alꢀcoordinated iodonium ylide 7 toward oxidative addiꢀ
tion, which favors the formation of the [2,3]ꢀ
rearrangement product via the concerted chargeꢀinduced
rearrangement mechanism. Alternatively, the strong σꢀ
donating phosphine ligand L11 facilitates oxidative adꢀ
dition of metalꢀcoordinated iodonium ylide 7 to form
copper(III)ꢀallyl complexes 8ꢀ10,7 which leads to the
formation of the [1,2]ꢀrearrangement product via subseꢀ
quent reductive elimination.
3
Isolated examples of controlling regioselectivity for [2,3]ꢀor
[1,2]ꢀrearrangements by modifying substrates or reaction conditions.
For example: (a) Pine, S. H.; Munemo, E. M.; Phillips, T. R.; Bartoliꢀ
ni, G.; Cotton, W. D.; Andrews, G. C. J. Org. Chem. 1971, 36, 984ꢀ
991. (b) Tanaka, T.; Shirai, N.; Sugimori, J.; Sato, Y. J. Org. Chem.
1992, 57, 5034ꢀ5036. (c) Narita, K.; Shirai, N.; Sato, Y. J. Org.
Chem. 1997, 62, 2544ꢀ2549. (d) Tayama, E.; Kimura, H. Angew.
Chem. Int. Ed. 2007, 46, 8869ꢀ8871. (e) Tayama, E.; Takedachi, K.;
Iwamoto, H.; Hasegawa, E. Tetrahedron 2010, 66, 9389ꢀ9395.
4
(a) Giddings, P. J.; D. Ivor, J.; Thomas, E. J. Tetrahedron Lett.
1980, 21, 395ꢀ398. (b) Doyle, M. P.; Tamblyn, W. H.; Bagheri, V. J.
Org. Chem. 1981, 46, 5094ꢀ5102. (c) Giddings, P. J.; John, D. I.;
Thomas, E. J.; Williams, D. J. J. Chem. Soc., Perkin Trans. 1 1982,
2757ꢀ2766. (d) Doyle, M. P.; Forbes, D. C.; Vasbinder, M. M.; Peterꢀ
son, C. S. J. Am. Chem. Soc. 1998, 120, 7653ꢀ7654. (e) Doyle, M. P.;
Hu, W.; Phillips, I. M.; Moody, C. J.; Pepper, A. G.; Slawin, A. G. Z.
Adv. Synth. Catal. 2001, 343, 112ꢀ117. (f) Krishnamoorthy, P.;
Browning, R. G.; Singh, S.; Sivappa, R.; Lovely, C. J.; Dias, H. V. R.
Chem. Commun. 2007, 731ꢀ733. (g) Deng, Q.ꢀH.; Chen, J.; Huang, J.ꢀ
S.; Chui, S. S.ꢀY.; Zhu, N.; Li, G.ꢀY.; Che, C.ꢀM. Chem. Eur. J. 2009,
15, 10707ꢀ10712.
In conclusion, we have developed regiodivergent copꢀ
perꢀcatalyzed [2,3]ꢀ and [1,2]ꢀrearrangements of iodoniꢀ
um ylides. These results represent the first example of
ACS Paragon Plus Environment