acetalization of hydroxyalkyl-substituted enol ethers by
using a newly designed chiral binol-based C2-symmetric
imidodiphosphoric acid as the chiral catalyst, generating
chiral spiroacetals in excellent stereoselectivity (eq 2,
Scheme 1).4b Subsequently, Nagorny established a similar
binol-based phosphoric acid-catalyzed stereoselective acet-
more synthetically efficient access to the structurally com-
plex targets, has been investigated even less and is thereby
highly valuable to be disclosed.5 We will herein report a
gold(I)/Brønsted acid relay catalytic three-component
cascade reaction, providing an important alternative of
known methods to directly access highly enantioenriched
spiroacetals.
Scheme 1. Typical Examples of Asymmetric Catalytic Access to
Chiral Spiroacetals
Scheme 2. Asymmetric Gold(I)/Brønsted Acid Relay Catalytic
Synthesis of Spiroacetals
In the last decades, the metal/organo combined catalysis
has turned out to be a robust strategy for the creation of
new enantioselective transformations.6ꢀ8 In particular, the
hybrid metal/organo relay catalysis was able to assemble
readily available starting materials into structurally com-
plex molecules, essentially avoiding additional laborious
workup and purification process of the intermediates
involved.8 We and others found that the combination of
gold complexes and chiral phosphoric acids enabled a
range of asymmetric cascade reactions.8 Recently, Bar-
luenga developed a palladium(II)-catalyzed synthesis of
racemic spiroacetals through a three-component cascade
reaction.9 Inspired by this finding and our knowledge in
gold/phosphoric acid binary catalysis,8d,h,kꢀm we envi-
saged that the alkynols of type 1 are principally able to
undergo a cyclization reaction to afford aromatic enol ethers
A under the catalysis of a gold complex.8k The intermedi-
ates A might participate in a formal [4 þ 2] cyclization reac-
tion, consisting of an asymmetric Mannich-type reaction
alization of hydroxyalkyl-substituted enol ethers (eq 3,
Scheme 1).4c Despite these successful examples, the union
of readily available and easily accessible fragments instead
of the preformed acetalization substrates into chiral spir-
oacetals under mild conditions, which actually provides a
(6) For reviews on combining organocatalysis with metal catalysis,
see: (a) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745. (b) de
Armas, P.; Tejedor, D.; Garcıa-Tellado, F. Angew. Chem., Int. Ed. 2010,
49, 1013. (c) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem.;Eur. J.
2010, 16, 9350. (d) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999.
(e) Zhou, J. Chem. Asian J. 2010, 5, 422. (f) Han, Z.-Y.; Wang, C.; Gong,
L.-Z. In Science of Synthesis: Asymmetric Organocatalysis; Maruoka, K.,
Ed.; Georg Thieme Verlag: Stuttgart, 2012; Vol. 2, p 697. (g) Loh, C. C. J.;
Enders, D. Chem.;Eur. J. 2012, 18, 10212. (h) Patil, N. T.; Shinde, V. S.;
Gajula, B. Org. Biomol. Chem. 2012, 10, 211.
(7) For early reports on the combined use of chiral organocatalysts
and metal complexes, see: (a) Chen, G. S.; Deng, Y. J.; Gong, L. Z.; Mi,
A. Q.; Cui, X.; Jiang, Y. Z.; Choi, M. C. K.; Chan, A. S. C. Tetrahedron:
Asymmetry 2001, 12, 1567. (b) Nakoji, M.; Kanayama, T.; Okino, T.;
Takemoto, Y. Org. Lett. 2001, 3, 3329. (c) Jellerichs, B. G.; Kong, J.-R.;
Krische, M. J. J. Am. Chem. Soc. 2003, 125, 7758. (d) Kanayama, T.;
Yoshida, K.; Miyabe, H.; Takemoto, Y. Angew. Chem., Int. Ed. 2003,
(8) For metal/organo relay catalysis, see: (a) Abillard, O.; Breit, B.
Adv. Synth. Catal. 2007, 349, 1891. (b) Chercheja, S.; Eilbracht, P. Adv.
Synth. Catal. 2007, 349, 1897. (c) Sorimachi, K.; Terada, M. J. Am.
Chem. Soc. 2008, 130, 14452. (d) Han, Z.-Y.; Xiao, H.; Chen, X.-H.;
Gong, L.-Z. J. Am. Chem. Soc. 2009, 131, 9182. (e) Liu, X.-Y.; Che,
C.-M. Org. Lett. 2009, 11, 4204. (f) Cai, Q.; Zhao, Z.-A.; You, S.-L.
Angew. Chem., Int. Ed. 2009, 48, 7428. (g) Terada, M.; Toda, Y. J. Am.
Chem. Soc. 2009, 131, 6354. (h) Wang, C.; Han, Z.-Y.; Luo, H.-W.;
Gong, L.-Z. Org. Lett. 2010, 12, 2266. (i) Chen, Q.-A.; Wang, D.-S.;
Zhou, Y.-G.; Duan, Y.; Fan, H.-J.; Yang, Y.; Zhang, Z. J. Am. Chem.
Soc. 2011, 133, 6126. (j) Chen, Q.-A.; Chen, M.-W.; Yu, C.-B.; Shi, L.;
Wang, D.-S.; Yang, Y.; Zhou, Y.-G. J. Am. Chem. Soc. 2011, 133, 16432.
(k) Han, Z.-Y.; Guo, R.; Wang, P.-S.; Chen, D.-F.; Xiao, H.; Gong, L.-Z.
Tetrahedron Lett. 2011, 52, 5963. (l) Han, Z.-Y.; Chen, D.-F.; Wang, Y.-Y.;
Guo, R.; Wang, P.-S; Wang, C.; Gong, L.-Z. J. Am. Chem. Soc. 2012, 134,
6532. (m) Wu, H.; He, Y.-P.; Gong, L.-Z. Adv. Synth. Catal. 2012, 354, 975.
ꢁ
42, 2054. And recent selected examples: (e) Ibrahem, I.; Cordova, A.
Angew. Chem., Int. Ed. 2006, 45, 1952. (f) Komanduri, V.; Krische, M. J.
J. Am. Chem. Soc. 2006, 128, 16448. (g) Mukherjee, S.; List, B. J. Am.
Chem. Soc. 2007, 129, 11336. (h) Rueping, M.; Antonchick, A. P.;
Brinkmann, C. Angew. Chem., Int. Ed. 2007, 46, 6903. (i) Hu, W.-H.;
Xu, X.-F.; Zhou, J.; Liu, W.-J.; Huang, H.-X.; Hu, J.; Yang, L.-P.;
Gong, L.-Z. J. Am. Chem. Soc. 2008, 2, 7782. (j) Nicewicz, D. a.;
MacMillan, D. W. C. Science (New York, N.Y.) 2008, 322, 77. (k) Lu,
Y.; Johnstone, T. C.; Arndtsen, B. A. J. Am. Chem. Soc. 2009, 131,
11284. (l) Nagib, D. A.; Scott, M. E.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2009, 131, 10875. (m) Simmons, B.; Walji, A. M.; Macmillan,
D. W. C. Angew. Chem., Int. Ed. 2009, 48, 4349. (n) Yang, T.; Ferrali, A.;
Sladojevich, F.; Campbell, L.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131,
9140. (o) Allen, A. E.; MacMillan, D. W. C. J. Am. Chem. Soc. 2010, 132,
4986. (p) MacMillan, D. W. C.; Shih, H. W.; Vander Wal, M. N.;
Grange, R. L. J. Am. Chem. Soc. 2010, 132, 13600. (q) Ikeda, M.;
Miyake, Y.; Nishibayashi, Y. 2010, 7289. (r) Xu, B.; Zhu, S.-F.; Xie,
X.-L.; Shen, J.-J.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2011, 50, 11483.
(n) Terada, M.; Toda, Y. Angew. Chem., Int. Ed. 2012, 51, 2093.
ꢁ
~
ꢁ
(9) Barluenga, J.; Mendoza, A.; Rodrιguez, F.; Fananas, F. J. Angew.
Chem., Int. Ed. 2009, 48, 1644.
B
Org. Lett., Vol. XX, No. XX, XXXX