694
M. Sun et al. / Tetrahedron Letters 54 (2013) 692–694
was achieved with NaBH4 (4.0 equiv) in MeOH at 25 °C for 15 min,9
followed by treatment of the resulting hemiaminal with excess TFA
in DCM to form the five-membered ring and deprotect the Boc
group in one pot, thus gave desired secondary amine 14 in 85%
yield (2 steps). Finally, the oxidation of 14 by sequential treatment
with N-bromosuccinimide (NBS) and 1,8-diazabicyclo[5.4.0]undec-
7-ene (DBU) provided a known imine 15, whose analytical and
spectral data10 were in good agreement with the literature re-
port.2c Having 15 been previously converted into (+)-gliocladin C
in two steps,2c its obtainment constitutes a formal diastereoselec-
tive synthesis of the latter.
In conclusion, a formal synthesis of (+)-gliocladin C was accom-
plished and intermediate 15 was obtained in a 34.5% total yield in
nine steps. A good efficiency combined with the fact that only
cheap reagents and popular conditions were adopted in our proce-
dures made the present synthesis practically and easily to handle,
thus provided a useful starting point for the synthesis of gliocladin
C-like library. Moreover, since epipolythiodiketo-piperazines with
30-indolyl substitution at the C3 position of a cyclotryptophan con-
stitute an intriguing subset of this alkaloid family,5 the methodol-
ogy described herein may be applied to these natural targets.
References and notes
1. (a) Usami, Y.; Yamaguchi, J.; Numata, A. Heterocycles 2004, 63, 1123–1129; (b)
Bertinetti, B. V.; Rodriguez, M. A.; Godeas, A. M.; Cabrera, G. M. J. Antibiot. 2010,
63, 681–683.
2. (a) Overman, L. E.; Shin, Y. Org. Lett. 2007, 9, 339–341; (b) DeLorbe, J. E.; Jabri, S.
Y.; Mennen, S. M.; Overman, L. E.; Zhang, F.-L. J. Am. Chem. Soc. 2011, 133, 6549;
(c) Furst, L.; Narayanam, J. M. R.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2011,
50, 9655–9659; (d) Boyer, N.; Movassaghi, M. Chem. Sci. 2012, 3, 1798.
3. (a) Qi, X.; Bao, H.; Tambar, U. K. J. Am. Chem. Soc. 2011, 133, 10050–10053; (b)
Han, S.; Movassaghi, M. J. Am. Chem. Soc. 2011, 133, 10768–10771; (c) Liu, S.;
Hao, X.-J. Tetrahedron Lett. 2011, 52, 5640–5642.
4. Finefield, J. M.; Sherman, D. H.; Tsukamoto, S.; Williams, R. M. J. Org. Chem.
2011, 76, 5954–5958.
5. For more C3–C30 bisindole alkaloids can see: Jiang, C.-S.; Guo, Y.-W. Mini-Rev.
Med. Chem. 2011, 11, 728–745.
6. Schkeryantz, J. M.; Woo, J. C. G.; Siliphaivanh, P.; Depew, K. M.; Danishefsky, S.
J. J. Am. Chem. Soc. 1999, 121, 11964–11975.
7. (a) Movassaghi, M.; Schmidt, M. A.; Ashenhurst, J. A. Org. Lett. 2008, 10, 4009–
4012; (b) Kolundzic, F.; Noshi, M. N.; Tjandra, M.; Movassaghi, M.; Miller, S. J. J.
Am. Chem. Soc. 2011, 133, 9104–9111.
8. Peris, G.; Jakobsche, C. E.; Miller, S. J. J. Am. Chem. Soc. 2007, 129, 8710–8711.
9. Govek, S. P.; Overman, L. E. Tetrahedron 2007, 63, 8499–8513.
10. ½ ꢂ ꢀ38.9 (c 0.7, CHCl3); IR (KBr) 3420, 3401, 3033, 2937, 1716, 1684, 1482,
a 2D5
1455, 1396, 1361, 1308, 1282, 1235, 1153, 1096, 1049, 1022, 752; 1H NMR
(500 MHz, CDCl3): d 8.19 (br s, 1H), 7.98 (br s, 0.5H), 7.52–7.32 (br m, 12.5H),
7.26–7.10 (br m, 5H), 6.74 (br s, 0.5H), 6.63 (br s, 0.5H), 5.45–5.36 (m, 4H), 3.91
(dd, J = 17.5, 1.0 Hz, 1H), 3.71 (br d, J = 23.3 Hz, 1H), 2.89 (d, J = 5.3 Hz, 3H); 13
C
NMR (125 MHz, CDCl3): 171.7, 171.6, 161.9, 155.4, 152.3, 150.6, 140.3, 139.2,
136.4, 136.1, 135.5, 134.9, 134.7, 134.0, 129.5, 128.8, 128.5, 128.1, 127.9, 127.8,
125.3, 125.2, 124.9, 124.2, 123.3, 122.6, 119.2, 116.1, 115.9, 96.4, 96.1, 68.8,
68.5, 67.4, 52.8, 52.8, 48.0, 25.9; HRMS Calcd for [C36H30N4O5+Na+]: 621.2108.
Found: 621.2129.
Acknowledgment
The work was financially supported by NSFC (No. 21102026).
Supplementary data
Supplementary data associated with this article can be found, in