Page 3 of 3
ChemComm
65 Joseph, M. Humphrey and B. F. Cravatt, Proc. Natl. Acad. Sc. USA, 2004,
101, 10000. (b) E. W. S. Chan, S. Chattopadhaya, R. C. Panicker, X.
Huang and S. Q. Yao, J. Am. Chem. Soc., 2004, 126, 14435. For aspartic
proteases see (c) S. Chattopadhaya, W. W. S. Chan and S. Q. Yao,
Tetrahedron Lett., 2005, 46, 4053. For interaction between actin and the
70 antitumor agent Aplyronine see (d) T. Kuroda, K. Suenaga, A. Sakakura,
T. Handa, K. Okamoto and H. Kigoshi, Bioconjugate Chem., 2006, 17,
524. For a review on photoaffinity labeling see (e) L. Dubinsky, B. P.
Krom and M. M. Meijler, Bioorg. Med. Chem., 2012, 20, 554.
[4] (a) X. Li, JꢀH. Cao, L. Ying. P. Rondard, Y. Zhang, P. Yi, JꢀF. Liu and
75 FꢀJ Nan, J. Med. Chem., 2008, 51, 3057 and references therein.
[5] (a) T. Hosoya, H. Aoyama, T. Ikemoto, T. Hiramatsu, Y. Kihara, M.
Endo and M. Suzuki, Bioorg. Med. Chem. Lett., 2002, 12, 3263. (b) T.
Hosoya, T. Hiramatsu, T. Ikemoto, H. Aoyama, T. Ohmae, M. Endo and
M. Suzuki, Bioorg. Med. Chem. Lett., 2005, 15, 1289. (c) T. Hosoya, A.
80 Inoue, T. Hiramatsu, H. Aoyama, T. Ikemoto and M. Suzuki, Bioorg.
Med. Chem., 2009, 17, 2490. (d) S. Kiyonakaa, K. Katoa, M. Nishida, K.
Mioc, T. Numagaa, Y. Sawaguchia, T. Yoshidaa, M. Wakamoria, E.
Moria, T. Numataa, M. Ishiid, H. Takemotoe, A. Ojidae, K. Watanabeb,
A. Uemurab, H. Kuroseb, T. Moriif, T. Kobayashig, Y. Satoh, C. Satoc, I.
85 Hamachie, and Y. Moria, Proc. Natl. Acad. Sc. USA, 2009, 106, 5400.
[6] (a) V. Alterio, A. D. Fiore, K. D’Ambrosio, C. T. Supuran and G. D.
Simone, Chem. Rev., 2012, 112, 4421. (b) R. Iyer, A. A. Barrese III, S.
Parakh, C. N. Parker and B. C. Tripp, J. Biomol. Screen., 2006, 11, 782.
[7] K. L. Buchmueller, B. T. Hill, M. S. Platz and K. M. Weeks, J. Am.
90 Chem. Soc., 2003, 125, 10850.
In conclusion, we have described two readily accessible small
molecule probes, 1 and 2, for selective capture of HCA II via
photoꢀirradiation allowing fluorescent visualization. The ability
of 5ꢀamino dimethyl isophthalate to act as a tripodal template for
capture molecule design was demonstrated. We believe that
1,3,5ꢀtrisubstituted benzene based photoꢀreactive probes coupled
with fluorescence based visualisation offers a simple and
effective method for protein capture, which should be of utility in
evaluating drug toxicity by studying their offꢀtarget interactions,
5
10 inhibitor design and early disease diagnosis.
N
(I)
(II)
15
M
N
M=Lysozyme
N=HCAII
O=HCAII + 2 –N2 + H+
20
[8] C. J. Shields, D. E. Falvey, G. B. Schuster, O. Buchardt, and P. E.
Nielsen, J. Org. Chem., 1988, 53, 3501.
O
[9] Spectroscopic data: For 1: δH (d6ꢀDMSO): 10.52 (1H, s), 9.21 (1H, t,
J = 5.5 Hz), 8.66 (1H, bs), 8.42 (1H, d, J = 9.0 Hz), 8.39ꢀ8.27 (4H, m),
95 8.26ꢀ8.07 (5H, m), 8.02 (2H, d, J = 8.5 Hz), 7.77 (2H, d, J = 8.5 Hz), 7.49
(2H, d, J = 8.5 Hz), 7.22 (2H, d, J = 8.5 Hz), 4.72 (2H, s), 4.53 (2H, d, J =
5.5 Hz), 4.12 (3H, s), 3.16 (2H, s), 3.14 (3H, s). δC (CDCl3): 169.6, 166.8,
166.7, 166.2, 144.2, 143.6, 143.2, 139.9, 135.9, 135.6, 131.9, 131.6,
131.3, 131.2, 131.0, 131.4, 129.5, 129.0, 128.3, 127.8, 127.4, 126.7,
100 126.6, 126.3, 125.5, 125.2, 124.2, 123.9, 122.9, 122.7, 121.7, 119.7,
116.8, 91.9, 85.5, 69.4, 59.5, 43.1, 38.5, 31.9; νmax ( KBr, cmꢀ1): 3752,
3413, 2923, 2857, 2364, 2122, 1651, 1599, 1547, 1452, 1333, 1284, 1155,
1099, 1028; λmax (DMSO): 365 nm (ε 30,985 Mꢀ1cmꢀ1), 347 nm (ε 24.630
Mꢀ1cmꢀ1), 285 nm (ε 35,384 Mꢀ1cmꢀ1); HRMS: Calcd for
105 C45H36N8O7S+Na+ 855.2325, found 855.2346. For 2: δH (d6ꢀDMSO):
10.60 (2H, s), 8.83 (1H, s), 8.65 (1H, s), 8.57 (1H, s), 8.45 (1H, d, J = 8.5
Hz), 8.34 (1H, d, J = 7.0 Hz), 8.29 (2H, d, J = 9.5 Hz), 8.23ꢀ8.04 (8H, m),
7.76 (4H, bs), 7.25 (4H, bs), 4.99 (2H, s), 4.72 (2H, s), 4.14 (2H, s), 3.32
(4H, s); δC (CDCl3): 169.4, 166.2, 165.4, 146.5,
110 143.9, 141.7, 139.1, 136.4, 136.1, 135.6, 134.9, 133.9, 133.6, 132.3,
131.9, 131.6, 131.4, 130.8, 130.1, 129.7, 129.2, 128.8, 128.5, 127.6,
127.2, 126.4, 126.3, 125.2, 125.0, 124.2, 123.7, 119.4, 119.3, 116.5, 91.7,
85.3, 69.2, 59.3, 56.2, 38.3, 34.7; νmax ( KBr, cmꢀ1): 3855, 3751, 3398,
2924, 2853, 2357, 2127, 1745, 1696, 1606, 1542, 1399, 1308, 1243, 1155,
115 1102, 1021; λmax (DMSO): 365 nm (ε 27,369 Mꢀ1cmꢀ1), 347 nm (ε 21,200
Mꢀ1cmꢀ1), 285 nm (ε 34,615 Mꢀ1cmꢀ1); HRMS: Calcd for
C46H36N8O9S+Na+ 899.2224, found 899.2259.
25
Figure 5: MALDI spectra: (I) Mixture of HCA II, BSA and Lysozyme +
2, incubated and photoꢀreacted; (II) expanded spectrum.
30 We thank the Leverhulme Trust, UK for support to CJS and AB.
PSA is grateful to CSIR, Government of India (GoI), for a
research fellowship. BS is grateful to DST, GoI for her Young
Scientist Research Fellowship. CL and JTB were funded by the
Wellcome Trust and the EPSRC respectively.
35 aDepartment of Chemistry, bDepartment of Biotechnology, Indian Institute
of Technology Kharagpur 721302 India
cDepartment of Chemistry, Chemistry Research Laboratory, University of
Oxford, 12 Mansfield Road, Oxford, UK OX1 3TA
E-mail: absk@chem.iitkgp.ernet.in
40 Fax: +91 3222 282552; Tel: +91 3222 283300
†Electronic Supplementary Information (ESI) available: Experimental
procedure, compound characterization, copies of NMR, Inhibition
Kinetics, ESI and MALDIꢀTOF MS.
[10] Capture experiment protocol: For capture experiments, the HCA II
concentration was kept at 0.5 ꢁM and total volume was made up to 100
120 ꢁL with buffer (20 mM HEPES; pH 7.2). HCA II and capture compounds
(10ꢀ100 ꢁM) were mixed by vortexing followed by centrifugation. For
cell lysate preparation, 5 mL of induced, lag phase BL21(DE3)pLysS
cells carrying plasmid pACA/HCA II were resuspended in 0.5 mL of
buffer (50 mM Tris; pH 8.0 , 50 mM NaCl, 10 mM EDTA, 1 mM
125 dithiothreitol, 1 mM phenyl methanesulfonyl fluoride, 0.2 mM ZnSO4),
sonicated and centrifuged at 10,000 rpm for 10 minutes. The cell lysate
thus obtained was mixed with the 50 ꢁM capture compounds. To probe
the selectivity of the capture compounds towards HCA II, BSA and
lysozyme were used as controls. BSA and lysozyme were mixed at
130 equimolar concentrations with HCA II. Exactly same method was
followed as used with HCA II. The compounds were incubated with
proteins for 15 min, then photoꢀirradiated with medium pressure mercury
lamp at ≥ 300 nm for 7 minutes followed by SDSꢀPAGE and mass
spectrometric analysis.
45 Notes and references
[1]. (a) P. P. Geurink, M. M. Prely, G. A. van der Marel, R. Bischoff and
H. S. Overkleeft, Top. Curr. Chem., 2012, 85. (b) D. J. Lapinsky, Bioorg.
Med. Chem., 2012, 6237. (c) Hoogendoorn, G. A. Van der Marel, B. I.
Florea and H. S. Overkleeft, Acc. Chem. Res., 2011, 44, 718 and
50 references therein. (d) W. P. Heal, T. H. Tam Dang and E. W. Tate,
Chem. Soc. Rev., 2011, 40, 246.
[2] (a) H. Köster, D. P. Little, P. Luan, R. Müller, S. M. Siddiqi, S.
Marappan and P. Yip, Assay Drug Dev. Technol., 2007, 5, 381. (b) J. J.
Fischer, C. Dalhoff, A. K. Schrey, O. Y. Graebner Neé Baessler, S.
55 Michaelis , K. Andrich, M. Glinski , F. Kroll, M. Sefkow, M. Dreger and
H. Koester, J. Proteomics, 2011, 75, 160. (c) C. Dalhoff, M. Hüben, T.
Lenz, P. Poot, E. Nordhoff, H. Köster and E. Weinhold, ChemBioChem.,
2010, 11, 256. (d) T. Lenz, J. J. Fischer and M. Dreger, J. Proteomics,
2011, 75, 100. (e) D. Rotili, M. Altun, A. Kawamura, A. Wolf, R.
60 Fischer, I. K. Leung, M. M. Mackeen, Y. M. Tian, P. J. Ratcliffe, A. Mai,
B. M. Kessler and C. J. Schofield, Chem. Biol., 2011, 18, 642. (f) C. M.
Salisbury and B. J. Cravatt, Proc. Natl. Acad. Soc. USA, 2007, 104, 1171.
[3] Fluorescence based visualization on a gel of protein capture has been
reported: for metalloproteases see (a) A. Saghatelian, N. Jessani, A.
135 [11] The mass spectra didn’t show any peak for BSA probably due to its
high MW (66.5 kDa).
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3