H. K. Kadam et al. / Tetrahedron Letters 54 (2013) 1003–1007
1007
Kokare, N. D.; Shinde, D. B. Russ. J. Org. Chem. 2009, 45, 1116–1118; (t) Darabi, H.
R.; Aghapoor, K.; Mohsenzadeh, F.; Taala, F.; Asadollahnejad, N.; Badiei, A. Catal.
Lett. 2009, 133, 84–89; (u) Hou, J.; Liu, Y.; Zhang, Z. J. Heterocycl. Chem. 2010, 47,
703–706; (v) Liu, J.; Liu, J.; Wang, J.; Jiao, D.; Liu, H. Synth. Commun. 2010, 40,
2047–2056; (w) Bandyopadhyay, D.; Mukherjee, S.; Rodriguez, R. R.; Banik, B. K.
Molecules 2010, 15, 4207–4212; (x) Akkilagunta, V. K.; Reddy, V. P.; Kakulapati,
R. R. Synlett 2010, 2571–2574.
The separation of catalyst was very easy as mere filtration
through an ordinary filter paper and drying (100 °C) was sufficient
enough to quantitatively recover the catalyst in active form. Reus-
ability of recovered catalyst was studied for a fresh reaction cycle
and fairly reproducible yields were obtained up to 7 consecutive
cycles as summarized in Table 3.
Though the role of graphite has not been clearly understood, a
speculative mechanism for product formation is proposed
(Scheme 2).
In conclusion, an efficiently recoverable, environment friendly,
and cheap graphite catalyst is demonstrated for the condensation
of diketones with o-phenylenediamine to give quinoxalines in
excellent yield at ambient condition.
4. (a) Dhakshinamoorthy, A.; Kanagaraj, K.; Pitchumani, K. Tetrahedron Lett. 2011,
52, 69–73; (b) Nandi, G. C.; Samai, S.; Kumar, R.; Singh, M. S. Synth. Commun.
2011, 41, 417–425; (c) Sharma, R. K.; Sharma, C. Catal. Commun. 2011, 12, 327–
331; (d) Jafarpour, M.; Rezaeifard, A.; Danehchin, M. Appl. Catal., A 2011, 394,
48–51; (e) Qi, C.; Jiang, H.; Huang, L.; Chen, Z.; Chen, H. Synthesis 2011, 387–396;
(f) Raghuveerachary, P.; Devanna, N. Asian J. Chem. 2011, 23, 1628–1630; (g)
Zhang, X.; Wang, J.; Bai, L. Synth. Commun. 2011, 41, 2053–2063; (h) Chavan, H.
V.; Adsul, L. K.; Bandgar, B. P. J. Chem. Sci. 2011, 123, 477–483; (i) Bachhav, H. M.;
Bhagat, S. B.; Telvekar, V. N. Tetrahedron Lett. 2011, 52, 5697–5701; (j) Huang, T.;
Jiang, D.; Chen, J.; Gao, W.; Ding, J.; Wu, H. Synth. Commun. 2011, 41, 3334–3343;
(k) Narsaiah, A. V.; Kumar, J. K. Synth. Commun. 2012, 42, 883–892; (l) Song, W.;
Liu, P.; Lei, M.; You, H.; Chen, X.; Chen, H.; Ma, L.; Hu, L. Synth. Commun. 2012, 42,
236–245; (m) Zhang, C.; Xu, Z.; Zhang, L.; Jiao, N. Tetrahedron 2012, 68, 5258–
5262; (n) Pan, F.; Chen, T.; Cao, J.; Zou, J.; Zhang, W. Tetrahedron Lett. 2012, 53,
2508–2510; (o) Kumbhar, A.; Kamble, S.; Barge, M.; Rashinkar, G.; Salunkhe, R.
Tetrahedron Lett. 2012, 53, 2756–2760.
Acknowledgments
Authors gratefully acknowledge the Department of Science and
Technology (DST) and the Council for Scientific and Industrial Re-
search (CSIR), New Delhi for financial support. H.K.K. thanks CSIR,
New Delhi for award of NET Senior Research Fellowship.
5. (a) Zhou, J.; Gong, G.; Zhi, S.; Duan, X. Synth. Commun. 2009, 39, 3743–3754; (b)
Li, J.; Jiang, D.; Chen, J.; Liu, M.; Ding, J.; Wu, H. J. Heterocycl. Chem. 2011, 48, 403–
406.
6. (a) Torney, P.; Patre, R.; Tilve, S. G. Synlett 2011, 639–642; (b) Majik, M. S.;
Parameswaran, P. S.; Tilve, S. G. J. Org. Chem. 2009, 74, 3591–3594; (c) Parvatkar,
P. T.; Parameswaran, P. S.; Tilve, S. G. J. Org. Chem. 2009, 74, 8369–8372; (d)
Kamat, D. P.; Tilve, S. G.; Kamat, V. P. Tetrahedron Lett. 2012, 53, 4469–4472; (e)
Dhumaskar, K.; Tilve, S. G. Green Chem. Lett. Rev. 2012, 5, 353–402.
7. (a) Kodomari, M.; Suzuki, Y.; Yoshida, K. Chem. Commun. 1997, 1567–1568; (b)
Sereda, G. A. Tetrahedron Lett. 2004, 45, 7265–7267; (c) Sharghi, H.; Sarvari, M.
H. Synthesis 2003, 243–246.
Supplementary data
Supplementary data (1H NMR, 13C NMR and DEPT spectra of all
the products) associated with this article can be found, in the on-
8. General procedure: Diketone (1 mmol), diamine (1 mmol), and graphite
(2 mmol) were mixed in a 50 mL round bottom flask and ethanol (10 mL) was
added. The reaction mixture was stirred vigorously at room temperature
(monitored by TLC). On completion, the mixture was filtered through an
ordinary filter paper and catalyst was washed with ethanol (10 mL). Organic
layer was concentrated to give crude solid product which on recrystallization
with ethanol/water (8:2) afforded analytically pure product. Structures of new
compounds were confirmed based on their 1H NMR, 13C NMR, DEPT data, and
elemental analysis.
References and notes
1. Brown, D. J.; Taylor, E. C.; Wipf, P. The Chemistry of Heterocyclic Compounds;
Quinoxalines; John Wiley & Sons: New York, 2004.
2. (a) Rajule, R.; Bryant, V. C.; Lopez, H.; Luo, X.; Natarajan, A. Bioorg. Med. Chem.
2012, 20, 2227–2234; (b) Abdelfattah, M. S.; Kazufumi, T.; Ishibashi, M. J. Nat.
Prod. 2010, 73, 1999–2002; (c) Blum, S.; Fiedler, H. J. Antibiot. 1995, 48, 619–625.
3. (a) More, S. V.; Sastry, M. N. V.; Yao, C. Green Chem. 2006, 8, 91–95; (b) Darabi, H.
R.; Mohandessi, S.; Aghapoor, K.; Mohsenzadeh, F. Catal. Commun. 2007, 8, 389–
392; (c) Heravi, M. M.; Bakhtiari, K.; Tehrani, M. H.; Javadi, N. M.; Oskooie, H. A.
ARKIVOC 2006, 16, 16–22; (d) Heravi, M. M.; Taheri, S.; Bakhtiari, K.; Oskooie, H.
A. Catal. Commun. 2006, 8, 211–214; (e) Srinivas, C.; Kumar, C. N. S. S. P.; Rao, V.
J.; Palaniappan, S. J. Mol. Catal. A: Chem. 2007, 265, 227–230; (f) Li, Z.; Li, W.; Sun,
Y.; Huang, H.; Ouyang, P. J. Heterocycl. Chem. 2008, 45, 285–288; (g) Shi, D.; Dou,
G. Synth. Commun. 2008, 38, 3329–3337; (h) Sithambaram, S.; Ding, Y.; Li, W.;
Shen, X.; Gaenzler, F.; Suib, S. L. Green Chem. 2008, 10, 1029–1032; (i) Potewar, T.
M.; Ingale, S. A.; Srinivasan, K. V. Synth. Commun. 2008, 38, 3601–3612; (j) Cai, J.;
Zou, J.; Pan, X.; Zhang, W. Tetrahedron Lett. 2008, 49, 7386–7390; (k) Shi, D.; Dou,
G.; Ni, S.; Shi, J.; Li, X. J. Heterocycl. Chem. 2008, 45, 1797–1801; (l) Huang, T.;
Wang, R.; Shi, L.; Lu, X. Catal. Commun. 2008, 9, 1143–1147; (m) Mousset, C.;
Provot, O.; Hamze, A.; Bignon, J.; Brion, J.; Alami, M. Tetrahedron 2008, 64, 4287–
4294; (n) Hasaninejad, A.; Zare, A.; Mohammadizadeh, M. R.; Shekouhy, M.
ARKIVOC 2008, 13, 28–35; (o) Yadav, J. S.; Reddy, B. V. S.; Premalatha, K.;
Shankar, K. S. Synthesis 2008, 23, 3787–3792; (p) Hasaninejad, A.; Zare, A.;
Zolfigol, M. A.; Shekouhy, M. Synth. Commun. 2009, 39, 569–579; (q) Ajaikumar,
S.; Pandurangan, A. Appl. Catal., A 2009, 357, 184–192; (r) Niknam, K.; Saberi, D.;
Mohagheghnejad, M. Molecules 2009, 14, 1915–1926; (s) Sangshetti, J. N.;
(2,3-Bis(3-methoxyphenyl)quinoxalin-6-yl)(phenyl)methanone 3e: Pale yellow
solid; mp 138–139 °C; 1H NMR (400 MHz, CDCl3,d ppm): 3.71 (3H, s), 3.73
(3H, s), 6.94 (2H, t, J = 8.0 Hz), 7.07–7.14 (4H, m), 7.26 (2H, q, J = 8.0 Hz), 7.53
(2H, t, J = 8.0 Hz), 7.64 (1H, t, J = 8.4 Hz), 7.91 (2H, d, J = 8.0 Hz), 8.28 (2H, s), 8.54
(1H, s); 13C NMR (100 MHz, CDCl3,d ppm): 55.30 (CH3), 55.31 (CH3), 114.66 (CH),
114.77 (CH), 115.52 (CH), 115.66 (CH), 122.25 (CH), 122.38 (CH), 128.55
(2 Â CH), 129.46 (2 Â CH), 129.75 (CH), 129.94 (CH), 130.17 (2 Â CH), 132.48
(CH), 132.88 (CH), 137.15 (Cq), 138.34 (Cq), 139.81 (Cq), 139.85 (Cq), 140.15
(Cq), 142.95 (Cq), 154.42 (Cq), 154.96 (Cq), 159.50 (2 Â Cq), 195.83 (Cq);
elemental analysis (calcd C = 78.01, H = 4.97, N = 6.27%) observed C = 77.65,
H = 4.75, N = 5.90%.
2,3-Bis(3-methoxyphenyl)-4a,5,6,7,8,8a-hexahydroquinoxaline 3q: White solid;
mp 136–137 °C; 1H NMR (400 MHz, CDCl3,d ppm): 1.42 (2H, t, J = 10.0 Hz),
1.62–1.64 (2H, m), 1.90 (2H, d, J = 8.0 Hz), 2.50 (2H, d, J = 14.0 Hz), 2.83 (2H, t,
J = 4.0 Hz), 3.69 (6H, s), 6.83 (2H, d, J = 8.0 Hz), 6.91 (2H, d, J = 8.0 Hz), 6.99 (2H,
s), 7.12 (2H, t, J = 8.0 Hz); 13C NMR (100 MHz, CDCl3,d ppm): 25.43 (CH2), 33.49
(CH2), 55.24 (CH3), 59.55 (CH), 112.59 (CH), 115.91 (CH), 120.64 (CH), 129.15
(CH), 139.13 (Cq), 159.34 (Cq), 159.56 (Cq); elemental analysis (calcd C = 75.83,
H = 6.94, N = 8.04%) observed C = 75.57, H = 7.10, N = 7.81%.