products in general display 3D shapes and possess several
chiral functional groups that are a good source of small
molecule modulators of proteinÀprotein, DNA/RNAÀ
protein interactions.1,2,8 In addition, interest is also rising
in emerging screening approaches, such as the use of
cellular phenotypes5a and in vivo models (i.e., the use of
zebrafish technology).9 The latter approach is attractive
because it is close to the animal model and is a good way to
evaluate the therapeutic potential of small molecules at an
early stage. In particular, natural products having macro-
cyclic architectures are attractive due to several reasons: (i)
the macrocyclic shapes represent preorganization, (ii) the
potential to map a large surface area, and (iii) numerous
binding sites.10 Despite all these attractive properties that
are commonly associated with macrocyclic compounds,
building a chemical toolbox having a diverse set of macro-
cyclic compounds is still in its infancy.11 With this objec-
tive, we launched a program that aims to obtain different
types of macrocyclic compounds that could be derived
from carbohydrates as a cheap source for chirality.
Scheme 1. Our Approach To Obtain 14-Membered Macrocycles
Herein, we outline our approach with glycopyranosides
as the starting material (1.1, Scheme 1), which can lead to
accessing various acyclic compounds (see 1.2 and 1.3).12
Through the utilization of functional groups at C-1 and
C-5, we then plan to incorporate amino acid moieties in
two different manners that would lead to two families of
unique macrocyclic glycohybrids(1.4 and 1.5) followingthe
subjection to the “stitching technology”. Our approach
can be general in nature; for example, the use of different
sugars (i.e., glucose, galactose, mannose, etc.) can lead to
producing 14-membered glycohybrids with variation in
their stereochemical display of hydroxyl groups. A specific
example of our approach is also shown in Scheme 1. For
example, if we utilize R-D-glucopyranoside (1.6) as the
starting material, we can aim to access 14-membered,
glycohybrid 1.4a that has retained the stereochemistry of
C-2 to C-5 hydroxyl groups. Inanother case, 14-membered
glycohybrid 1.5a has three hydroxyl groups with retention
ofthe stereochemistry, asitwas in the startingsugar and an
inverted primary hydroxyl group at C-5. Both macrocyclic
compounds 1.4a and 1.5a are planned to be assembled
through the crucial ring-closing metathesis “stitching tech-
nology” on highly functionalized acyclic substrates, 1.7
and 1.8. First, as a proof of concept study, we set our
objective toward achieving the synthesis of two macro-
cyclic targets, 1.4a and 1.5a.
Methyl-R-D-glucopyronoside (2.1, Scheme 2) was used
as the test starting material. Upon subjection to perbenzy-
lation, the pyranoside ring was opened under acidic con-
ditions and then directly applied to reductive alkylation
giving 2.2 in a high yield. The secondary amine was then
coupled with various N-Fmoc protected amino acids,
which upon N-Fmoc removal and amidation resulted in
2.4. At this stage the acyclic precursor was set to bis-
allylation that gave the required bis-allylated product 2.5
needed to test our key stitching technology on this highly
functionalized substrate. To our delight, use of the Grubbs
second generation catalyst13 (G-II, 15 mol %) led to 14-
membered macrocyclic ring formation (olefinic isomeric
ratio not defined yet). Finally, this mixture of two olefinic
(8) (a) Arkin, M. R.; Randal, M.; DeLano, W. L.; Hyde, J.; Luong,
T. N.; Oslob, J. D.; Raphael, D. R.; Taylor, L.; Wang, J.; McDowell,
R. S.; Wells, J. A.; Braisted, A. C. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 1603. (b) DeLano, W. L.; Ultsch, M. H.; de Vos, A. M.; Wells, J. A.
Science 2000, 287, 1279.
(9) (a) Andersson, O.; Adams, B. A.; Yoo, D.; Ellis, G. C.; Gut, P.;
Anderson, R. M.; German, M. S.; Stainier, D. Y. Cell Metab. 2012, 15,
885. (b) Peterson, R. T.; Macrae, C. A. Ann. Rev. Pharmacol. Toxicol.
2012, 52, 433.
(10) Krasnoff, S. B.; Englich, U.; Miller, P. G.; Shuler, M. L.; Glahn,
R. P.; Donzelli, B. G.; Gibson, D. M. J. Nat. Prod. 2012, 75, 175.
(11) (a) Driggers, E. M.; Hale, S. P.; Lee, J.; Terrett, N. K. Nat. Rev.
Drug Discovery 2008, 7, 608. (b) Ajay, A.; Sharma, S.; Gupt, M. P.;
Bajpai, V.; Hamidullah; Kumar, B.; Kaushik, M. P.; Konwar, R.;
Ampapathi, R. S.; Tripathi, R. P. Org. Lett. 2012, 14, 4306. (c) Moretti,
J. D.; Wang, X.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 7963. (d)
Marcaurelle, L. A.; Comer, E.; Dandapani, S.; Duvall, J. R.; Gerard, B.;
Kesavan, S.; Lee, M. D. t.; Liu, H.; Lowe, J. T.; Marie, J. C.; Mulrooney,
C. A.; Pandya, B. A.; Rowley, A.; Ryba, T. D.; Suh, B. C.; Wei, J.;
Young, D. W.; Akella, L. B.; Ross, N. T.; Zhang, Y. L.; Fass, D. M.;
Reis, S. A.; Zhao, W. N.; Haggarty, S. J.; Palmer, M.; Foley, M. A.
J. Am. Chem. Soc. 2010, 132, 16962. (e) Stanton, B. Z.; Peng, L. F.;
Maloof, N.; Nakai, K.; Wang, X.; Duffner, J. L.; Taveras, K. M.;
Hyman, J. M.; Lee, S. W.; Koehler, A. N.; Chen, J. K.; Fox, J. L.;
Mandinova, A.; Schreiber, S. L. Nat. Chem. Biol. 2009, 5, 154. (f) Peng,
L. F.; Stanton, B. Z.; Maloof, N.; Wang, X.; Schreiber, S. L. Bioorg.
Med. Chem. Lett. 2009, 19, 6319. (g) Dockendorff, C.; Nagiec, M. M.;
Weiwer, M.; Buhrlage, S.; Ting, A.; Nag, P. P.; Germain, A.; Kim, H. J.;
Youngsaye, W.; Scherer, C.; Bennion, M.; Xue, L.; Stanton, B. Z.;
Lewis, T. A.; Macpherson, L.; Palmer, M.; Foley, M. A.; Perez, J. R.;
Schreiber, S. L. ACS Med. Chem. Lett. 2012, 3, 808.
(12) (a) Kim, M. J.; Lee, S. H.; Park, S. O.; Kang, H.; Lee, J. S.; Lee,
K. N.; Jung, M. E.; Kim, J.; Lee, J. Bioorg. Med. Chem. 2011, 19, 5468.
(b) Lewandowski, B.; Jarosz, S. Org. Lett. 2010, 12, 2532. (c) Muthana,
S.; Yu, H.; Cao, H.; Cheng, J.; Chen, X. J. Org. Chem. 2009, 74, 2928. (d)
Rivera, D. G.; Vercillo, O. E.; Wessjohann, L. A. Org. Biomol. Chem.
2008, 6, 1787. (e) Bodine, K. D.; Gin, D. Y.; Gin, M. S. Org. Lett. 2005, 7,
4479. (f) Menand, M.; Blais, J. C.; Hamon, L.; Valery, J. M.; Xie, J.
J. Org. Chem. 2005, 70, 4423. (g) Jefferson, E. A.; Arakawa, S.; Blyn,
L. B.; Miyaji, A.; Osgood, S. A.; Ranken, R.; Risen, L. M.; Swayze, E. E.
J. Med. Chem. 2002, 45, 3430. (h) Calcerrada-Munoz, N.; O’Neil, I.;
Cosstick, R. Nucleosides, Nucleotides, Nucleic Acids 2001, 20, 1347.
(13) (a) Grubbs, R. H.; Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995,
28, 446. (b) Grubbs, R. H. Tetrahedron 2004, 60, 7117.
Org. Lett., Vol. 15, No. 3, 2013
433