Organic & Biomolecular Chemistry
Communication
Table 2 Chemical ligation of N-acyl isotripeptides 9a–c in DMF–piperidine
Relative areaa,b (%)
Product characterization by HPLC-MS
Ligated
peptide (LP)
Transacylation
product (TA)
Total crude
yield (%)
of products
isolated
Cyclic
TS size
[M + H]+
found
[M + H]+
React
React
LP (RT)
TA (RT)
LP
TA
found
9a
9b
9c
10
11
12
92
91
90
36.3 (48.2)
28.6 (48.2)
0.9 (45.2)
44.4 (57.3)
71.4 (57.1)
99.1 (54.2)
19.2 (63.2)
0.00
0.00
10a
10b
10c
557.1
571.1
585.1
11a
11b
11c
762.1
—
—
a Determined by HPLC-MS semiquantitative. The area of ion-peak resulting from the sum of the intensities of the [M + H]+ and [M + Na]+ ions of
each compound was integrated (corrected for starting material). b LP = ligated peptide, TA = transacylation product.
piperidine–DMF at 50 °C, 50 W for 3 h (Scheme 4, Table 2). 10 J. P. Tam and Z. Miao, J. Am. Chem. Soc., 1999, 121, 9013.
HPLC-MS indicated the formation of desired intramolecular 11 J.-S. Fruchart, H. Gras-Masse and O. Melnyk, Tetrahedron
ligated products 10a–c, transacylated products 11a–c and
Lett., 1999, 40, 6225.
unreacted starting material 9a–c. The retention times and frag- 12 J. Shao and J. P. Tam, J. Am. Chem. Soc., 1995, 117, 3893.
mentation patterns of 9a–c and 10a–c were also studied with 13 D. R. Englebretsen, B. G. Garnham, D. A. Bergman and
control experiments (HPLC-MS of pure 9a–c). Thus HPLC-MS,
via (−)ESI-MS/MS, confirmed that compounds 9a–c and 10a–c, 14 B. L. Nilsson, L. L. Kiessling and R. T. Raines, Org. Lett.,
have very different fragmentation patterns, proving the for- 2000, 2, 1939.
mation of intramolecular ligated product 10a–c (see ESI†). The 15 B. L. Nilsson, L. L. Kiessling and R. T. Raines, Org. Lett.,
P. F. Alewood, Tetrahedron Lett., 1995, 36, 8871.
identity of 10c was further confirmed by HRMS.
2001, 3, 9.
16 (a) C. P. R. Hackenberger and D. Schwarzer, Angew. Chem.,
Int. Ed., 2008, 47, 10030; (b) P. McCaldon and P. Argos, Pro-
teins: Struct., Funct., Genet., 1988, 4, 99.
Conclusion
17 R. Okamoto and Y. Kajihara, Angew. Chem., Int. Ed., 2008,
47, 5402.
Tryptophan isopeptides with α-, β-, or γ-amino acid units were
synthesized and acyl migration form indole nitrogen to terminal
NH2 was studied under microwave irradiation. Intramolecular
acyl transfer through 10-, 11- and 12-membered transition states
was favoured over 7-membered transition state and acyl
migration occur more readily in basic non-aqueous media rela-
tive to aqueous buffered conditions. This observations form a
starting point for development of a ligation method.
18 H. Hojo, C. Ozawa, H. Katayama, A. Ueki, Y. Nakahara and
Y. Nakahara, Angew. Chem., Int. Ed., 2010, 49, 5318.
19 D. Macmillan and D. W. Anderson, Org. Lett., 2004, 6, 4659.
20 T. Kawakami and S. Aimoto, Tetrahedron Lett., 2003, 44,
6059.
21 J. Offer, C. N. C. Boddy and P. E. Dawson, J. Am. Chem. Soc.,
2002, 124, 4642.
22 P. Botti, M. R. Carrasco and S. B. H. Kent, Tetrahedron Lett.,
2001, 42, 1831.
23 B. Wu, J. Chen, J. D. Warren, G. Chen, Z. Hua and
S. J. Danishefsky, Angew. Chem., Int. Ed., 2006, 45, 4116.
Notes and references
1 L. Zhang, T. R. Torgerson, X.-Y. Liu, S. Timmons, A.
D. Colosia, J. Hawiger and J. P. Tam, Proc. Natl. Acad. 24 A. R. Katritzky, N. E. Abo-Dya, S. R. Tala and Z. K. Abdel-
Sci. U. S. A., 1998, 95, 9184.
Samii, Org. Biomol. Chem., 2010, 8, 2316.
2 C. Rao and J. P. Tam, J. Am. Chem. Soc., 1994, 116, 6975.
3 J. C. Spetzler and J. P. Tam, Int. J. Pept. Protein Res., 1995,
45, 78.
4 G. G. Kochendoerfer, D. Salom, J. D. Lear, R. Wilk-Orescan,
S. B. Kent and W. F. DeGrado, Biochemistry, 1999, 38, 11905.
5 T. W. Muir, D. Sondhi and P. A. Cole, Proc. Natl. Acad.
Sci. U. S. A., 1998, 95, 6705.
6 T. C. Evans Jr., J. Benner and M. Q. Xu, J. Biol. Chem., 1999,
274, 3923.
7 J. P. Tam, Y. A. Lu, C. F. Liu and J. Shao, Proc. Natl. Acad.
Sci. U. S. A., 1995, 92, 12485.
25 (a) A. R. Katritzky, S. R. Tala, N. E. Abo-Dya, T. S. Ibrahim,
S. A. El-Feky, K. Gyanda and K. M. Pandya, J. Org. Chem.,
2011, 76, 85; (b) K. Ha, M. Chahar, J.-C. M. Monbaliu,
E. Todadze, F. K. Hansen, A. A. Oliferenko, C. E. Ocampo,
D. Leino, A. Lillicotch, C. V. Stevens and A. R. Katritzky,
J. Org. Chem., 2012, 77, 2637.
26 A. A. Oliferenko and A. R. Katritzky, Org. Biomol. Chem.,
2011, 9, 4756.
27 S. S. Panda, C. El-Nachef, K. Bajaj, A. O. Al-Youbi,
A. Oliferenko and A. R. Katritzky, Chem. Biol. Drug Des.,
2012, 80, 821–827.
8 M. Schnolzer and S. B. Kent, Science, 1992, 256, 221.
9 C.-F. Liu and J. P. Tam, Proc. Natl. Acad. Sci. U. S. A., 1994,
91, 6584.
28 M. El Khatib, M. Elagawany, F. Jabeen, E. Todadze,
O. Bol’shakov, A. Oliferenko, L. Khelashvili, S. A. El-Feky,
A. Asiri and A. R. Katritzky, Org. Biomol. Chem., 2012, 10, 4836.
This journal is © The Royal Society of Chemistry 2013
Org. Biomol. Chem., 2013, 11, 1594–1597 | 1597