Please do not adjust margins
Organic & Biomolecular Chemistry
Page 4 of 4
COMMUNICATION
Journal Name
indicate the presence of Bpin-OH/O(Bpin)2 in the reaction mixtures
(see supporting information).15
6
7
Riermeier and A. Börner, Chem. ComDmOuIn: 1.,0.21000390/,D108O6B70–01784608D;
(b) Z. Wu, S. Du, G. Gao, W. Yang, X. Yang, H. Huang and M.
Chang, Chem. Sci., 2019, 10, 4509–4514.
For selected references, see: (a) P. N. Rylander. Catalytic
Hydrogenation over Platinum Metals, Academic Press: New
York, 1967: p 21; (b) A. Roe and J. A. Montgomery, J. Am. Chem.
Soc., 1953, 75, 910–912; (c) Q. P. B. Nguyen and T. H. Kim,
Tetrahedron., 2013, 69, 4938–4943 and references cited there
in.
For selected references, see: (a) S. E. Varjosaari, V. Skrypai, P.
Suating, J. J. M. Hurley, A. M. D. Lio, T. M. Gilbert and M. J.
Adlera, Adv. Synth. Catal., 2017, 359, 1872–1878; (b) D.
Menche, J. Hassfeld, J. Li, G. Menche, A. Ritter and S. Rudolph,
Org. Lett., 2006, 8, 741–744; (c) Y. Kawase, T. Yamagishi, J.-y
Kato, T. Kutsuma, T. Kataoka, T. Iwakuma and T. Yokomatsu,
Synthesis, 2014, 46, 455–464.
With the support of these preliminary studies and some reported
literatures,16 we propose a plausible mechanism of the present
protocol as follows. Both the concerted and stepwise pathways are
feasible (Scheme S2). First, the aldehyde and amine couple to
generate the imine A under the removal of H2O. In the case of
concerted pathway, attachment of H2O to HBpin in the form of a 1:1
Lewis acid-base adduct enhances the hydricity of the B-H bond16 and
thereby fostering the hydride transfer from HBpin to the imine
function in A. Then the transfer of both the hydride (from HBpin) and
hydrogen (from H2O) to the imine moiety likely via a six-membered
cyclic transition state (C)16a produces the corresponding secondary
amines under the elimination of Bpin-OH. Conversely, the imine may
also first undergo hydroboration with HBpin to yield the N-borylated
amine (B) which further gets hydrolysed by H2O presumably via a
four membered transition state (D) (Scheme S2).
8
In conclusion, we have developed an efficient catalyst- and
solvent-free room temperature reductive amination protocol which
produces the secondary amines in one-pot. Our protocol is
applicable to synthetically diverse amines, which include aliphatic,
(hetero)aromatic, and polyaromatic substrates and importantly,
provides excellent chemoselectivities (aldehyde over ketone,
primary amine over the secondary amine and amide). Furthermore,
the present protocol offers excellent functional group tolerance and
can be used to access biologically relevant compounds.
We gratefully acknowledge DST, India (Project No.
DST/INSPIRE/04/2015/002219) and IIT Madras (seed grant) for the
financial support. V. K. P. and S. B. thank the IIT Madras and UGC,
India, respectively for a research fellowship.
9
Y. Hoshimoto, T. Kinoshita, S. Hazra, M. Ohashi and S. Ogoshi,
J. Am. Chem. Soc., 2018, 140, 7292−7300.
10 For selected references, see: (a) D. J. Parks, R. E. v. H. Spence
and W. E. Piers, Angew. Chem., Int. Ed., 1995, 34, 809–811; (b)
C. E. Tucker, J. Davidson and P. Knochel, J. Org. Chem., 1992,
57, 3482−3485; (c) V. K. Pandey, S. N. R. Donthireddy and A.
Rit, Chem. Asian J., 2019, 14, 3255–3258; (d) A. Harinath, J.
Bhattacharjee, T. K. Panda, Chem. Commun., 2019, 55, 1386–
1389.
11 For selected reviews, see: (a) A. Sarkar, S. Santra, S. K. Kundu,
A. Hajra, G. V. Zyryanov, O. N. Chupakhin, V. N. Charushinb and
A. Majee, Green Chem., 2016, 18, 4475–4525; (b) M. B.
Gawande, V. D. B. Bonifácio, R. Luque, P. S. Branco and R. S.
Varma, ChemSusChem., 2014, 7, 24–44.
12 (a) S. Enthaler, Catal. Lett., 2011, 141, 55–61; (b) S. Enthaler,
ChemCatChem., 2010, 2, 1411–1415.
Conflicts of interest
13 (a) V. Kumar, U. Sharma, P. K. Verma, N. Kumar and B. Singh,
Adv. Synth. Catal., 2012, 354, 870–878; (b) V. Fasano, J. E.
Radcliffe and M. J. Ingleson, ACS Catal., 2016, 6, 1793−1798.
14 (a) M. Daubresse and G. C. Alexander, Int. J. Obes., 2015, 39,
377−378; (b) J. M. Rho, G. D. Anderson, S. D. Donevan and H.
S. White, Epilepsia, 2002, 43, 358–361; (c) L. L. Brunton, B. A.
Chabner and B. C. Knollmann, Goodman and Gilman’s The
Pharmacological Basis of Therapeutics, 12th ed., McGraw Hill
Professional, 2010. (d) H.-R. Dieter, J. Engel, B. Kutscher, E.
Polymeropouls, S. Szelenyi and B. Nickel, Pharmaceutically
Active 1,2,4-Triamino-Benzene Derivatives, Process for Their
Preparation and Pharmaceutical Compositions Containing
Them. U.S. Patent US005383330A, 1995; (e) R. N. Fitzgerald, A.
Miller and J. F. Toczko, Process for the Preparation of
Retigabine, WO Patent WO2012098075Al, 2012.
15 (a) H. F. Bettinger, M. Filthaus, H. Bornemann and I. M. Oppel,
Angew. Chem. Int. Ed., 2008, 47, 4744–4747; (b) J. C.
Vantourout, H. N. Miras, A. Isidro-Llobet, S. Sproules and A. J.
B. Watson, J. Am. Chem. Soc., 2017, 139, 4769–4779; (c) W.
Wang, M. Luo, D. Zhu, W. Yao, L. Xu and M. Ma, Org. Biomol.
Chem., 2019, 17, 3604–3608.
There are no conflicts to declare.
Notes and references
1
2
For selected references, see: (a) O. I. Afanasyev, E. Kuchuk, D.
L. Usanov and D. Chusov, Chem. Rev., 2019, 119,
11857−11911; (b) K. S. Hayes, Appl. Catal., A, 2001, 221,
187−195; (c) E. J. Corey, B. Czakó and L. Kürti, Molecules and
Medicine, John Wiley & Sons, Inc., Hoboken, 2007.
For selected references, see: (a) S. Gomez, J. A. Peters and T.
Maschmeyer, Adv. Synth. Catal., 2002, 344, 1037–1057; (b) P.
Ruiz-Castillo and S. L. Buchwald, Chem. Rev., 2016, 116,
12564–12649; (c) Q. Yang, Q. Wang and Z. Yu, Chem. Soc. Rev.,
2015, 44, 2305–2329 and references cited there in; (d) S. N. R.
Donthireddy, P. M. Illam and A. Rit, Inorg. Chem., 2020, 59,
1835–1847.
3
For selected references, see: (a) A. Robichaud and A. N. Ajjou,
Tetrahedron Lett., 2006, 47, 3633–3636; (b) V. A. Tarasevich
and N. G. Kozlov, Russ. Chem. Rev., 1999, 68, 55–72; (c) M.
Zhang, H. Yang, Y. Zhang, C. Zhu, W. Li, Y. Cheng and H. Hu,
Chem. Commun., 2011, 47, 6605–6607.
16 (a) B. S. N. Huchensk and A. W. H. Speed, Org. Biomol. Chem.,
2019, 17, 1999–2004; (b) H. Stachowiak, J. Kaźmierczak, K.
Kuciński and G. Hreczycho, Green Chem., 2018, 20, 1738–1742;
(c) Y. Wu, C. Shan, J. Ying, J. Su, J. Zhu, L. L. Liu and Y. Zhao,
Green Chem., 2017, 19, 4169–4175.
4
5
(a) A. F. Abdel-Magid and S. J. Mehrman, Org. Process Res.
Dev., 2006, 10, 971–1031; (b) S. Raoufmoghaddam, Org.
Biomol. Chem., 2014, 12, 7179–7193.
(a) T. Gross, A. M. Seayad, M. Ahmad and M. Beller, Org. Lett.,
2002, 4, 2055−2058; (b) R. F. Borch, M. D. Bernstein and H. D.
Durst, J. Am. Chem. Soc., 1971, 93, 2897–2904; (c) A. F. Abdel-
Magid, K. G. Carson, B. D. Harris, C. A. Maryanoff and R. D.
Shah, J. Org. Chem., 1996, 61, 3849–3862.
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins