Paper
RSC Advances
consistent catalytic activity. Further work is in progress to
broaden the scope of this catalytic system for other organic
transformation. A protocol, which allows expansion of this
chemistry to other aromatic halides and mechanistic pathway
of this reaction are currently under investigation.
R. H. Taaning, A. T. Lindhardt and T. Skrydstrup, Angew.
Chem., Int. Ed., 2012, 51, 798–801; (e) Y. Li, D. Xue,
C. Wang, Z. T. Liu and J. Xiao, Chem. Commun., 2012,
1320–1322; (f) H. Cao, T. O. Vieira and H. Alper, Org. Lett.,
2011, 13, 11–13; (g) F. Zeng and H. Alper, Org. Lett., 2010,
12, 5567–5569.
´
5 (a) Modern Carbonylation Methods, ed. L. Kollar, Wiley-VCH,
Acknowledgements
2008; (b) R. Grigg and S. P. Mutton, Tetrahedron, 2010, 66,
5515–5548.
6 A. Ogawa and N. Sonoda, Compr. Org. Funct. Group
Transform., 1995, 5, 231.
7 S. B. Bandgar, B. P. Bandgar, B. L. Korbad and S. S. Sawant,
Tetrahedron Lett., 2007, 48, 1287–1290.
SMI acknowledges CSIR and DST, New Delhi, Govt. of India, for
nancial support. RAM acknowledges UGC, New Delhi, India
for his Maulana Azad National Fellowship (F1-17.1/2012-13/
MANF-2012-13-MUS-WES-9628/SA-III). ASR acknowledges CSIR,
New Delhi, India for his senior research fellowship.
8 W. Bauer and K. Kuhlem, Methoden Org. Chem., 1985, E5,
832.
9 G. C. Barrett and D. R. Hogg, RSC, London, 1981, vol. 6, p. 13.
References
1 (a) A. M. Sajith and A. Muralidharan, Tetrahedron Lett., 2012, 10 J. Voss and S. Patai, In the Chemistry of Acid Derivatives,
53, 1036–1041; (b) A. M. Sajith and A. Muralidharan,
Wiley, Chichester, 1979, p. 1021, suppl. B, pt 2.
Tetrahedron Lett., 2012, 53, 5206–5210; (c) J. F. Hartwig, 11 M. J. Janssen and S. Patai, In the Chemistry of Carboxylic Acids
Inorg. Chem., 2007, 46, 1936–1947; (d) V. F. Slagt,
and Esters, Wiley , Chichester, 1969, p. 705.
A. H. M. de Vries, J. G. de Vries and R. M. Kellogg, Org. 12 (a) W. Yang and D. G. Drueckhammer, J. Am. Chem. Soc.,
Process Res. Dev., 2010, 14, 30–47; (e) P. Mondal,
S. Banerjee, A. S. Roy, T. K. Mandal and S. M. Islam, J.
Mater. Chem., 2012, 22, 20434–20442; (f) S. M. Islam,
2001, 123, 11004–11009; (b) K. B. Wiberg, J. Chem. Educ.,
1996, 73, 1089–1095; (c) M. W. Cronyn, M. P. Chang and
R. A. Wall, J. Am. Chem. Soc., 1955, 77, 3031–3034.
P. Mondal, A. S. Roy, S. Mondal and D. Hossain, 13 (a) J. Staunton and K. J. Weissman, Nat. Prod. Rep., 2001,
Tetrahedron Lett., 2010, 51, 2067–2070.
18, 380–416; (b) L. Stryer, Biochemistry, Freeman, New
York, 4th edn, 1995; (c) T. C. Bruice and S. J. Benkovic,
Bioorganic Mechanisms, ed. W. A. Benjamin, New York,
1966, vol. 1.
2 (a) E. Mizushima, T. Hayashi and M. Tanaka, Green Chem.,
2001, 3, 76–79; (b) L. Ren and N. Jiao, Chem. Commun.,
2014, 50, 3706–3709; (c) H. Z. Jiang and B. F. Shi, Org.
Biomol. Chem., 2014, 12, 2538–2542; (d) B. C. G. Soderberg, 14 W. Yang and D. G. Drueckhammer, J. Am. Chem. Soc., 2001,
J. M. Wallace and J. Tamariz, Org. Lett., 2012, 4, 1339–1342; 123, 11004–11009.
(e) Y. Zhang, J. Ji, X. Zhang, S. Lin, Q. Pan and L. Jia, Org. 15 J. S. Johnson and D. A. Evans, Acc. Chem. Res., 2000, 33, 325–
Lett., 2014, 16, 2130–2133. 335.
3 (a) T. M. Konrad, J. A. Fuentes, A. M. Z. Slawin and 16 P. J. May, M. Bradley, D. C. Harrowven and D. Pallin,
M. L. Clarke, Angew. Chem., Int. Ed., 2010, 49, 9197–9200;
Tetrahedron Lett., 2000, 41, 1627–1630.
(b) D. B. G. Williams, M. L. Shaw, M. J. Green and 17 W. J. Xiao and H. Alper, J. Org. Chem., 1997, 62, 3422–3423.
C. W. Holzapfel, Angew. Chem., Int. Ed., 2008, 47, 560–563; 18 C. F. Li, W. J. Xiao and H. Alper, J. Org. Chem., 2009, 74, 888–
(c) T. O. Vieira, M. J. Green and H. Alper, Org. Lett., 2006, 8,
890.
6143–6145; (d) W. Kim, K. Park, A. Park, J. Choe and 19 (a) W. J. Xiao, G. Vasapollo and H. J. Alper, Org. Chem., 1998,
S. Lee, Org. Lett., 2013, 15, 1654–1657; (e) T. Kippo,
K. Hamaoka and I. Ryu, J. Am. Chem. Soc., 2013, 135, 632–
635; (f) K. Takahashi, M. Yamashita and K. Nozaki, J. Am.
Chem. Soc., 2012, 134, 18746–18757; (g) R. Giri, J. K. Lam
and J. Q. Yu, J. Am. Chem. Soc., 2010, 132, 686–693; (h)
S. H. Chikkali, R. Bellini, B. de Bruin, J. I. van der Vlugt
and J. N. H. Reek, J. Am. Chem. Soc., 2012, 134, 6607–6616;
(i) I. Fleischer, K. M. Dyballa, R. Jennerjahn, R. Jackstell,
R. Franke, A. Spannenberg and M. Beller, Angew. Chem.,
Int. Ed., 2013, 52, 2949–2953; (j) J. Ferguson, F. Zeng and
H. Alper, Org. Lett., 2012, 14, 5602–5605; (k) N. Hasegawa,
63, 2609–2612; (b) W. J. Xiao and H. J. Alper, J. Org. Chem.,
1998, 63, 7939–7944; (c) W. J. Xiao, G. Vasapollo and
H. Alper, J. Org. Chem., 1999, 64, 2080–2084; (d) W. J. Xiao
and H. Alper, J. Org. Chem., 1999, 64, 9646–9652; (e)
W. J. Xiao, G. Vasapollo and H. Alper, J. Org. Chem., 2000,
65, 4138–4144; (f) W. J. Xiao, G. Vasapollo and H. Alper, J.
Org. Chem., 2001, 66, 6229–6231; (g) W. J. Xiao,
G. Vasapollo and H. Alper, J. Org. Chem., 2005, 70, 1802–
1807; (h) H. Cao, W. J. Xiao and H. Alper, Adv. Synth.
Catal., 2006, 348, 1807–1812; (i) C. F. Li, W. J. Xiao and
H. Alper, J. Org. Chem., 2008, 74, 888–890.
V. Charra, S. Inoue, Y. Fukumoto and N. Chatani, J. Am. 20 (a) K. R. Gruenwald, A. M. Kirillov, M. Haukka, J. Sanchiz
Chem. Soc., 2011, 133, 8070–8073.
4 (a) X. F. Wu, H. Neumann, A. Spannenberg, T. Schulz, H. Jiao
and M. J. Beller, J. Am. Chem. Soc., 2010, 132, 14596–14602;
and A. J. L. Pombeiro, Dalton Trans., 2009, 2109–2120; (b)
M. Singla, M. Gupta, P. Mathur and M. S. Hundal,
Transition Met. Chem., 2008, 33, 175–182.
(b) S. M. Lu and H. Alper, J. Am. Chem. Soc., 2005, 127, 21 (a) U. Mandi, M. Pramanik, A. S. Roy, N. Salam, A. Bhaumik
14776–14784; (c) W. Yuan, X. Dong, M. Shi, P. McDowell
and G. Li, Org. Lett., 2012, 14, 5582–5585; (d) T. M. Gøgsig,
and S. M. Islam, RSC Adv., 2014, 4, 15431–15440; (b)
N. Salam, P. Mondal, J. Mondal, A. S. Roy, A. Bhaumik and
This journal is © The Royal Society of Chemistry 2014
RSC Adv., 2014, 4, 26181–26192 | 26191