LETTER
Synthesis of Carboxylic Acids by Styrene Oxide
95
91 (80), 65 (38). Anal. Calcd for C10H11NO3: C, 62.17; H, 5.74; N,
7.25. Found: C, 61.98; H, 5.63; N, 7.05.
References
(1) (a) Transition Metals for Organic Synthesis: Building
2-(4-Nitrobenzamido)acetic Acid (3i)
Blocks and Fine Chemicals; Vol. 1 and 2; Beller, M.; Bolm,
C., Eds.; Wiley-VCH: Weinheim, 1998. (b) Davies, S. G.
Organotransition Metal Chemistry: Application to Organic
Synthesis; Pergamon Press: Oxford, 1982, Chap. 6.
(2) (a) Michalak, M.; Wicha, J. Synlett 2005, 2277. (b) Doi, T.;
Fukuyama, T.; Minamino, S.; Husson, G.; Ryu, I. Chem.
Commun. 2006, 1875. (c) Krompiec, S.; Kuznik, N.; Urbala,
M.; He, R. J. Mol. Catal. A: Chem. 2006, 256, 17. (d) Doi,
T.; Fukuyama, T.; Horiguchi, J.; Okamura, T.; Ryu, I.
Synlett 2006, 721. (e) Doi, T.; Fukuyama, T.; Minamino, S.;
Ryu, I. Synlett 2006, 3013. (f) Arisawa, M.; Terada, Y.;
Takahashi, K.; Nakagawa, M.; Nishida, A. J. Org. Chem.
2006, 71, 4255. (g) Burling, S.; Paine, B. M.; Nama, D.;
Brown, V. S.; Mahon, M. F.; Prior, T. J.; Pregosin, P. S.;
Whittlesey, M. K.; Williams, J. M. J. J. Am. Chem. Soc.
2007, 129, 1987. (h) Casey, C. P.; Clark, T. B.; Guzei, A. J.
Am. Chem. Soc. 2007, 129, 11821. (i) Fukuyama, T.; Doi,
T.; Minamino, S.; Omura, S.; Ryu, I. Angew. Chem. Int. Ed.
2007, 46, 5559. (j) Omura, S.; Fukuyama, T.; Horiguchi, J.;
Murakami, Y.; Ryu, I. J. Am. Chem. Soc. 2008, 130, 14094.
(k) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am. Chem.
Soc. 2008, 130, 6338. (l) Omura, S.; Fukuyama, T.;
Murakami, Y.; Okamoto, H.; Ryu, I. Chem. Commun. 2009,
6741.
Light brown solid; yield 186.1 mg, 83%; mp 152–154 °C. IR (KBr):
3316, 3110, 1706, 1641, 1601, 1541, 1425, 1351, 1297, 1231, 1108,
1013, 930, 874, 831, 801, 786, 716 cm–1. H NMR (400 MHz,
1
DMSO-d6): δ = 3.97 (d, 2 H, J = 8 Hz), 8.11 (d, 2 H, J = 8 Hz), 8.33
(d, 2 H, J = 8 Hz), 9.28 (t, 1 H, J = 5 Hz), 13.14 (br s, 1 H). 13C NMR
(100 MHz, DMSO-d6): δ = 41.3, 123.6, 128.8, 139.3, 149.1, 164.8,
170.9. MS (EI): m/z (%) = 224 (2) [M+], (179, 29), 150 (100), 120
(24), 104 (91), 92 (62), 50 (83). Anal. Calcd for C9H8N2O5: C,
48.22; H, 3.60; N, 12.50. Found: C, 48.12; H, 3.47; N, 12.27.
2-(2-Chlorobenzamido)acetic Acid (3j)
White solid; yield 181.6 mg, 85%; mp 158–162 °C. IR (KBr): 3289,
3082, 1721, 1626, 1597, 1596, 1553, 1469, 1437, 1402, 1350, 1321,
1259, 1230, 1173, 1052, 999, 947, 842, 760 cm–1. H NMR (400
1
MHz, DMSO-d6): δ = 3.92 (d, 2 H, J = 8 Hz), 7.40–7.49 (m, 3 H),
7.51 (t, 1 H, J = 4 Hz), 8.79 (t, 1 H, J = 4 Hz), 12.71 (br s, 1 H). 13
C
NMR (100 MHz, DMSO-d6): δ = 40.9, 127.0, 129.0, 129.9, 130.8,
132.6, 136.2, 166.6, 170.9. MS (EI): m/z (%) = 213 (1) [M+], 168
(34), 139 (100), 111 (47), 75 (38), 50 (17). Anal. Calcd for
C9H8NO3Cl: C, 50.60; H, 3.77; N, 6.56. Found: C, 50.45; H, 3.60;
N, 6.46.
Cinnamic Acid (3k)
White solid; yield 117.5 mg, 79%; mp 129–132 °C. 1H NMR (400
MHz, DMSO-d6): δ = 6.56 (d, 1 H, J = 8 Hz), 7.43–7.73 (m, 5 H),
7.90 (d, 1 H, J = 8 Hz), 11.61 (br s, 1 H). 13C NMR (100 MHz,
DMSO-d6): δ = 173.9, 147.16, 135.1, 130.9, 128.9, 128.3, 118.4.
(3) (a) Denichoux, A. I.; Fukuyama, T.; Doi, T.; Horiguchi, J.;
Ryu, I. Org. Lett. 2010, 12, 1. (b) Patman, R. L.; Williams,
V. M.; Bower, J. F.; Krische, M. J. Angew. Chem. Int. Ed.
2008, 47, 5220.
4-Hydroxybenzoic Acid (3l)
White solid; yield 114.6 mg, 83%; mp 210–214 °C. 1H NMR (400
MHz, DMSO-d6): δ = 6.93 (d, 2 H, J = 8.4 Hz), 7.77 (d, 2 H, J = 8.4
Hz), 9.79 (s, 1 H), 10.63 (br s, 1 H). 13C NMR (100 MHz, DMSO-
d6): δ = 115.8, 128.4, 132.1, 163.3, 191.0.
(4) (a) Wakamatsu, H.; Nishida, M.; Adachi, N.; Mori, M. J.
Org. Chem. 2000, 65, 3966. (b) Krompiec, S.; Pigulla, M.;
Szczepankiewicz, W.; Bieg, T.; Kuznik, N.; Leszczynska-
Sejda, K.; Kubicki, M.; Borowiak, T. Tetrahedron Lett.
2001, 42, 7095. (c) Kuznik, N.; Krompiec, S.; Bieg, T.; Baj,
S.; Skutil, K.; Chrobok, K. J. Organomet. Chem. 2003, 665,
167. (d) Shibahara, F.; Bower, J. F.; Krische, M. J. J. Am.
Chem. Soc. 2008, 130, 14120. (e) Ngai, M.-Y.; Skucas, E.;
Krische, M. J. Org. Lett. 2008, 10, 2705. (f) Smejkat, T.;
Han, H.; Breit, B.; Krische, J. J. Am. Chem. Soc. 2009, 131,
10366.
(5) (a) Kornievskaja, V. S.; Kruppa, A. I.; Leshina, T. V. J.
Inclusion Phenom. Macrocyclic Chem. 2008, 60, 123.
(b) Marinello, J.; Marchand, C.; Mott, B. T.; Bain, A.;
Thomas, C. J.; Pommier, Y. Biochemistry 2008, 47, 9345.
(c) Polyakov, N. E.; Leshina, T. V. Open Conf. Proc. J.
2011, 2, 64. (d) Vippagunta, S. R.; Brittain, H. G.; Grant, D.
J. W. Adv. Drug Delivery Rev. 2001, 48, 3. (e) Pierre, F.;
Chua, P. C.; O’Brien, S. E.; Siddiqui-Jain, A.; Bourbon, P.;
Haddach, M.; Michaux, J.; Nagasawa, J.; Schwaebe, M. K.;
Stefan, E.; Vialettes, A.; Whitten, J. P.; Chen, T. K.;
Darjania, L.; Stansfield, R.; Anderes, K.; Bliesath, J.;
Drygin, D.; Ho, C.; Omori, M.; Proffitt, C.; Streiner, N.;
Trent, K.; Rice, W. G.; Ryckman, D. M. J. Med. Chem.
2011, 54, 635.
(6) (a) King, C. J. Chemtech. 1992, 285. (b) Kirk, R. E.;
Othmer, D. F. Encyclopedia of Chemical Technology, 4th
ed.; Wiley: New York, 1995. (c) Hong, Y. K.; Hong, W. H.;
Han, D. H. Biotechnol. Bioprocess Eng. 2001, 6, 386.
(d) Yu, L.; Lin, T.; Guo, Q.; Hao, J. Desalination 2003, 154.
(e) Saito, S.; Nakasato, K.; Katoh, Y.; Oshibe, Y.; Ishidoya,
M. Mater. Trans. 2004, 45, 759. (f) Wang, Z.; Luo, Y.; Yu,
P. J. Memb. Sci. 2006, 280. (g) Ferrer, J. S. J.; Laborie, S.;
Durand, G.; Rakib, M. J. Memb. Sci. 2006, 280. (h) Vertova,
A.; Aricci, G.; Rondinini, S.; Miglio, R.; Carnelli, L.;
D’Olimpio, P. J. Appl. Electrochem. 2009, 39, 2051.
Formation of Ruthenium Complex I:
{Ru[OCH(CH3)Ph]Cl(CO)(PPh3)2}
RuHCl(CO)(PPh3)3 (0.05 mmol) and CDCl3 (1 mL) were placed in
an NMR tube. The tube was purged with N2, capped with a rubber
septum, and heated at 90 °C for 10 min. After cooling to r.t., styrene
oxide (2a, 0.05 mmol) was added. The resulting mixture was heated
at 90 °C for 30 min. The formation of complex I was confirmed by
1H NMR and 13C NMR measurements. Recrystallization from
CHCl3 and hexane gave the ruthenium complex I.
White solid. IR (KBr): νCO = 1920 cm–1. H NMR (400 MHz,
1
CDCl3): δ = 1.56 (d, 3 H, J = 3.2 Hz), 3.08 (q, 1 H, J = 4.8 Hz), 7.38–
7.42 (m, 17 H), 7.51–7.55 (m, 6 H), 7.59–7.64 (m, 6 H), 7.73–7.76
(m, 6 H). 13C NMR (125 MHz, CDCl3): δ = 18.27, 51.09, 125.34,
127.71, 128.10, 129.97 [d, 3J(C–P) = 7 Hz], 130.42 [d, 4J(C–P) = 2
2
1
Hz], 131.84 [d, J(C–P) = 14 Hz], 134.42 [d, J(C–P) = 43 Hz],
207.17 (t, J = 9.5 Hz). 31P NMR (160 MHz, CDCl3): δ = 35.95,
38.96. Anal. Calcd for C45H39ClO2P2Ru: C, 66.70; H, 4.85. Found:
C, 66.47; H, 4.83.
Acknowledgment
The financial support of this work by the Research Council of The
University of Isfahan is acknowledged.
Supporting Information for this article is available online at
m
iotSrat
ungIifoop
r
t
© Georg Thieme Verlag Stuttgart · New York
Synlett 2013, 24, 90–96