ChemComm
Communication
affect this subtle balance of acidities of these protons and the
reactivity to the external nucleophile.
In conclusion, the presence of an alkynyl electron-donating
group, in the form of an ynamide-based substrate, has been studied
in the Au-catalyzed [3,3]-rearrangement of propargylic esters. Highly
reactive 1,10-substituted a-acyloxyallenamides are formed as the
immediate product, existing in equilibrium with a-vinyl gold oxo-
carbenium complexes, can be trapped through the reaction with
indole nucleophiles to form g-indolyl a-acyloxyenamides in good to
excellent yields and excellent E-stereoselectivity.
Scheme 4 Attempted chirality transfer.
Notes and references
1 (a) A. Fu¨rstner and P. W. Davies, Angew. Chem., Int. Ed., 2007,
46, 3410; (b) D. J. Gorin, B. D. Sherry and F. D. Toste, Chem. Rev.,
´
˜
2008, 108, 3351; (c) E. Jimenez-Nu´nez and A. M. Echavarren, Chem.
Rev., 2008, 108, 3326; (d) Z. Li, C. Brouwer and C. He, Chem. Rev.,
2008, 108, 3239; (e) A. S. K. Hashmi and M. Rudolph, Chem. Soc.
Rev., 2008, 37, 1766; ( f ) A. Arcadi, Chem. Rev., 2008, 108, 3266;
(g) N. T. Patil and Y. Yamamoto, Chem. Rev., 2008, 108, 3395.
2 (a) J. Tsuji and T. Mandai, in Metal-Catalyzed Cross-Coupling Reactions,
ed. A. de Meijere and F. Diederich, Wiley-VCH, Weinheim, 2004, vol. 2,
p. 585; (b) S. Ma, Eur. J. Org. Chem., 2004, 1175.
3 L. Zhang, J. Am. Chem. Soc., 2005, 127, 16804.
4 For reviews of Au-catalyzed propargyl ester rearrangements,
see: (a) S. Wang, G. Zhang and L. Zhang, Synlett, 2010, 692;
(b) N. Marion and S. P. Nolan, Angew. Chem., Int. Ed., 2007, 46, 2750;
(c) J. Marco-Contelles and E. Soriano, Chem.–Eur. J., 2007, 13, 1350.
5 For recent reviews detailing ynamide chemistry, see: (a) K. A. De
Korver, H. Li, A. G. Lohse, R. Hayashi, Z. Lu, Y. Zhang and
R. P. Hsung, Chem. Rev., 2010, 110, 5064; (b) G. Evano, A. Coste
and K. Jouvin, Angew. Chem., Int. Ed., 2010, 49, 2840.
Scheme 5 Mechanistic considerations.
6 For Pt- and Cu-catalyzed rearrangement reactions of related ynol
ether propargylic esters, see: J. Barluenga, L. Riesgo, R. Vicente,
L. A. Lopez and M. Tomas, J. Am. Chem. Soc., 2007, 129, 7772.
7 For recent Au-catalyzed reactions of ynamides, see: (a) R. B. Dateer,
K. Pati and R.-S. Liu, Chem. Commun., 2012, 48, 7200; (b) G. Ung,
D. Mendoza-Espinosa and G. Bertrand, Chem. Commun., 2012,
48, 7088; (c) B. Dateer, B. S. Shaibu and R.-S. Liu, Angew. Chem.,
Int. Ed., 2012, 51, 113; (d) P. W. Davies, A. Cremonesi and
L. Dumitrescu, Angew. Chem., Int. Ed., 2011, 50, 8931;
(e) S. Kramer, Y. Odabachian, J. Overgaard, M. Rottlaender,
F. Gagosz and T. Skrydstrup, Angew. Chem., Int. Ed., 2011,
50, 5090; ( f ) C. F. Xu, M. Xu, Y.-X. Jia and C.-Y. Li, Org. Lett.,
2011, 13, 1556; (g) P. W. Davies, A. Cremonesi and N. Martin, Chem.
Commun., 2011, 47, 379; (h) A. S. K. Hashmi, S. Pankajakshan,
M. Rudolph, E. Enns, T. Bander, F. Rominger and W. Frey, Adv.
Synth. Catal., 2009, 351, 2855; (i) S. Couty, C. Meyer and J. Cossy,
Tetrahedron, 2009, 65, 1809; ( j) A. S. K. Hashmi, M. Rudolph,
J. W. Bats, W. Frey, F. Rominger and T. Oeser, Chem.–Eur. J., 2008,
14, 6672; (k) S. Couty, C. Meyer and J. Cossy, Angew. Chem., Int. Ed.,
2006, 45, 6726.
8 S. J. Heffernan and D. R. Carbery, Tetrahedron Lett., 2012, 53, 5180.
9 For the complexity of mixing Ag and Au precatalysts, see: D. Wang,
R. Cai, S. Sharma, J. Jirak, S. K. Thummanapelli, N. G. Akhmedov,
H. Zhang, X. Liu, J. L. Petersen and X. Shi, J. Am. Chem. Soc., 2012,
134, 9012.
10 M. C. Kimber, Org. Lett., 2010, 12, 1128.
11 For a review discussing the synthetic chemistry of enamides, see:
D. R. Carbery, Org. Biomol. Chem., 2008, 6, 3455.
12 For a recent Pd(II)-catalyzed synthesis of a-acyloxyenamides from
ynamides, see: D. L. Smith, W. R. F. Goundry and H. W. Lam, Chem.
Commun., 2012, 48, 1505.
13 M. Egi, M. Umemura, T. Kawai and S. Akai, Angew. Chem., Int. Ed.,
2011, 50, 12197.
14 S. Huang, P. J. Connolly, R. Lin, S. Emanuel and S. A. Middleton,
Bioorg. Med. Chem. Lett., 2006, 16, 3639.
15 For a recent example of enantioenriched propargylic esters furnish-
ing racemic products after Au(I)-catalysed 3,3-rearaangement
initiated processes, see: J. W. Cran and M. E. Krafft, Angew. Chem.,
Int. Ed., 2012, 51, 9398.
Primarily as a mechanistic probe, S-1a has been examined
when reacting with 5-iodoindole (Scheme 4). Under the same
reaction conditions as previously described, this enantioen-
riched ynamide furnished rac-4f in a reasonable yield of 60%.
The experimental observations discussed in this communi-
cation, namely no chirality transfer and the sensitivity of
the reaction outcome to both ynamide and nucleophile struc-
ture, deserve comment (Scheme 5). The complete absence of
point - axial - point chirality transfer during the conversion
of S-1a to 4f under the presently discussed mild conditions
(ꢀ30 1C, 1 h, Scheme 4) strongly suggests the direct inter-
mediacy of an achiral species. Accordingly, we feel chiral
a-acyloxyallenamide 8 is in equilibrium with the achiral a-vinyl
gold oxocarbenium complex 9. A similar observation of 100%
racemisation in a recent Au(I)-promoted rearrangement cascade
of propargylic pivalates has supported the intermediacy of
a-vinyl gold oxocarbenium species.15 The formation of 4a can
now occur through the addition of indole to either 8 or 9.
However, we feel the consideration of 9 may help in appreciating
the sensitivity of reaction outcome. Depending on the nature of
N-substitution and nucleophile, 9a can either promote conjugate
addition of 3a, to form 4a, or undergo E 2 Z equilibration
(9a 2 9b) through vinylogous enolization, prior to proto-
deauration and the formation of Z-2 or E-7. The presence of
the O-acyloxocarbenium moiety would be expected to signifi-
cantly increase the acidity of both the enone g-proton and the
acyl a-methylene protons, thus assisting both E 2 Z equili-
bration and intramolecular proto-deauration. The electron
donating ability of the N-centre and the nucleophilicity will
c
2316 Chem. Commun., 2013, 49, 2314--2316
This journal is The Royal Society of Chemistry 2013