1462
D. Demeter et al. / Tetrahedron Letters 54 (2013) 1460–1462
Acknowledgments
We are grateful for the financial support of this work by CNCS-
UEFISCDI (Project PN-II-ID-PCCE-2011-2-0027) and to POSDRU/89/
1.5/S/60189 for the fellowship given to Claudia Lar.
References and notes
1. (a) Blanchard, P.; Leriche, P.; Frère, P.; Roncali, J. In Advanced Functional
p-
Conjugated Polythiophenes Based on Tailored Precursors, Handbook of Conducting
Polymers; Skotheim, T. A., Reynolds, J. R., Eds., 3rd ed.; CRC Press: Boca Raton,
2007. chapter 13; (b) Goldenberg, L. M.; Bryce, M. R.; Petty, M. C. J. Mater. Chem.
1999, 9, 1957–1974; (c) Roncali, J. J. Mater. Chem. 1999, 9, 1875–1893; (d)
Kane-Maguire, L. A. P.; Wallace, G. G. Chem. Soc. Rev. 2010, 39, 2545–2576; (e)
Wolf, M. O. Adv. Mater. 2001, 13, 545–553; (f) Heinze, J.; Frontana-Uribe, B. A.;
Ludwigs, S. Chem. Rev. 2010, 110, 4724–4771.
2. Berlin, A.; Vercelli, B.; Zotti, G. Polym. Rev. 2008, 48, 493–530.
3. Demeter, D.; Blanchard, P.; Grosu, I.; Roncali, J. J. Incl. Phenom. Macrocycl. Chem.
2008, 61, 227.
4. (a) McQuade, D. T.; Pullen, A. E.; Swager, T. M. Chem. Rev. 2000, 100, 2537–
2574; (b) Capobianco, M. L.; Barbarella, G.; Manetto, A. Molecules 2012, 17,
910–933.
5. (a) Algi, F.; Cihaner, A. Tetrahedron Lett. 2008, 49, 3530–3533; (b) Roncali, J.
Chem. Rev. 1997, 97, 173–205.
6. (a) Scheib, S.; Bäuerle, P. J. Mater. Chem. 1999, 9, 2139–2150; (b) Lévesque, I.;
Leclerc, M. J. Chem. Soc., Chem. Commun. 1995, 2293–2294; (d) Boldea, A.;
Lévesque, I.; Leclerc, M. J. Mater. Chem. 1999, 9, 2133–2138.
7. (a) Bäuerle, P.; Scheib, S. Acta Polym. 1995, 46, 124–129; (b) Bäuerle, P.; Götz,
G.; Hiller, M.; Scheib, S.; Fischer, T.; Segelbacher, U.; Bennati, M.; Grupp, A.;
Mehring, M.; Stoldt, M.; Seidel, C.; Geiger, F.; Schweizer, H.; Umbach, E.;
Schmelzer, M.; Roth, S.; Egelhaaf, H. J.; Oelkrug, D.; Emele, P.; Port, H. Synth.
Met. 1993, 61, 71–79; (c) Berlin, A.; Zotti, G.; Zecchin, S.; Schiavon, G. Synth.
Met. 2002, 131, 149–160.
8. (a) Marsella, M. J.; Swager, T. M. J. Am. Chem. Soc. 1993, 115, 12214–12215; (b)
Demeter, D.; Blanchard, P.; Grosu, I.; Roncali, J. Electrochem. Commun. 2007, 9,
1587–1591.
9. Demeter, D.; Blanchard, P.; Allain, M.; Grosu, I.; Roncali, J. J. Org. Chem. 2007, 72,
5285–5291.
10. Jousselme, B.; Blanchard, P.; Levillain, E.; Delaunay, J.; Allain, M.; Richomme, P.;
Rondeau, D.; Gallego-Planas, N.; Roncali, J. J. Am. Chem. Soc. 2003, 125, 1363–
1370.
Figure 3. Single potential scan of 5 (a) and potentiodynamic electropolymerization
11. NaH (2.5 equiv) was added in small portions, at room temperature (rt), under
argon, with stirring to a solution of 4,40-bis(hydroxymethyl)-2,20-bithiophene
(1) (1 equiv) in 50 ml of dried and degassed DMF and the mixture was allowed
to stir for 1 h at rt. Next, a solution of ditosylated oligoethyleneglycol (1 equiv)
in 20 ml of dried and degassed DMF was added dropwise. Once the addition
was complete, stirring was continued for 72 h at rt. CH2Cl2 (300 ml) was added
and the mixture was washed with H2O (4 ꢁ 150 ml), and the organic layer was
dried over MgSO4 and the solvent removed in vacuo. The pure target
macrocycles were isolated by silica gel column chromatography using EtOAc
as the mobile phase.
of compound 5; (b) 5 mM in 0.10 M Bu4NPF6 (MeCN); scan rate 100 mV sꢀ1
.
40,400-(2,5,8,11-Tetraoxadodecane-1,12-diyl)-20,200-bithiophene (5)
Yield: 32% (30 mg), white solid; mp = 155–156 °C, Rf (EtOAc) = 0.58. Calculated
for C16H20O4S2; C, 56.44; H, 5.92; S, 18.84. Found: C, 56.61; H, 6.03; S, 18.68. 1
H
NMR (500 MHz, CDCl3): d = 3.69–3.63 (m, 8H), 3.74 (s, 4H), 4.59 (s, 4H), 6.86 (d,
2H, J = 1.5 Hz), 7.61 ppm (d, 2H, J = 1.5 Hz); 13C NMR (125.7 MHz, CDCl3):
d = 65.8, 69.2, 71.2, 71.5, 118.9, 124.3, 137.6, 141.5 ppm. MS (MALDI-TOF) m/
z = 340 [M]+.
40,400-(2,5,8,11,14-Pentaoxapentadecane-1,15-diyl)-20,200-bithiophene (6)
Yield: 31% (33 mg), white solid; mp = 141–142 °C, Rf (EtOAc) = 0.41. Calculated
for C18H24O5S2; C, 56.23; H, 6.29; S, 16.68. Found: C, 56.49; H, 6.16; S, 16.48. 1
H
NMR (500 MHz, CDCl3): d = 3.71–3.59 (m, 16H), 4.53 (s, 4H), 6.96 (s, 2H),
7.37 ppm (s, 2H); 13C NMR (125.7 MHz, CDCl3): d = 68.4, 69.2, 70.5, 70.7, 70.9,
121.0, 124.1, 137.9, 140.8 ppm. MS (MALDI-TOF) m/z = 384 [M]+, 407, [M+Na]+,
423 [M+K]+.
40,400-(2,5,8,11,14,17-Hexaoxaoctadecane-1,18-diyl)-20,200-bithiophene (7)
Yield: 33% (26 mg), white solid; mp = 129–130 °C, Rf (EtOAc) = 0.30. Calculated
for C20H28O6S2; C, 56.05; H, 6.59; S, 14.96. Found: C, 56.22; H, 6.81; S, 14.82. 1
H
NMR (500 MHz, CDCl3): d = 3.54–3.60 (m, 20H), 4.52 (s, 4H), 7.25 (s, 2H), 7.34
(s, 2H); 13C NMR (75 MHz, CD3COCD3): d = 69.64, 71.21, 72.22, 72.33, 72.38,
123.29, 126.15, 139.19, 143.43, MS (EI, 70 eV) m/z (%) = 428 (43) [M]+, 234
(5.9), 221 (6.5), 207 (31.3); 192 (100), 179 (9.3), 147 (23.5), 133 (32.8) 115 (10),
103 (5.7), 96 (63.2), 89 (54.8), 73 (7.6), 59 (6.6), 45 (76.7).
Figure 4. Cyclic voltammograms of poly(5). Black line: in 0.10 Bu4NPF6 (MeCN), red
line: in 0.10 M LiClO4 (MeCN), scan rate 100 mV sꢀ1
.
12. (a) Pomerantz, M.; Chang, Y.; Kasim, R. K.; Elsenbaumer, R. L. J. Mater. Chem.
1999, 9, 2155–2163; (b) Satonaka, H. Bull. Chem. Soc. Jpn. 1983, 56, 3337–3342;
(c) Taylor, E. C.; Vogel, D. E. J. Org. Chem. 1985, 50, 1002–1004.
13. Aitken, R. A.; Bibby, M. C.; Bielefeldt, F.; Double, J. A.; Laws, A. L.; Mathieu, A.-L.;
Ritchie, R. B.; Wilson, D. W. J. Arch. Pharm. 1998, 331, 405–411.
thesis of polymers poly(5) and poly(6) has been achieved. Analysis
of the electrochemical properties of the polymers in the presence
of various metal cations revealed a remarkable negative shift of
the oxidation potential of poly(5) upon complexation with Li+.
The ability of poly(5) for the complexation of Li+ and the high
selectivity of this process are attributed to a conformational
change of the bithiophene conjugated system.
14. (a) Fanta, P. E. Chem. Rev. 1964, 64, 613–632; (b) Fanta, P. E. Synthesis 1974, 9–
21; (c) Masui, K.; Ikegami, H.; Mori, A. J. Am. Chem. Soc. 2004, 126, 5074–5075.