ORGANIC
LETTERS
2013
Vol. 15, No. 6
1166–1169
Entry to β‑Alkoxyacrylates via
Gold-Catalyzed Intermolecular Coupling
of Alkynoates and Allylic Ethers
Sae Rom Park,† Cheoljae Kim,† Dong-gil Kim,† Neetipalli Thrimurtulu,†
Hyun-Suk Yeom,‡ Jungho Jun,‡ Seunghoon Shin,*,‡ and Young Ho Rhee*,†
Department of Chemistry, Pohang University of Science and Technology, Hyoja-dong
San 31, Pohang, Kyungbuk 790-784, Republic of Korea, and Department of Chemistry
and Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea
sshin@hanyang.ac.kr; yhrhee@postech.ac.kr
Received November 14, 2012
ABSTRACT
The first gold-catalyzed intermolecular coupling of alkynoates and allylic ethers invoking alkoxy addition and [3,3]-sigmatropic rearrangement as
the key mechanism has been developed. Remarkably, the reaction showed complete chemoselectivity toward the pathway initiated by the alkoxy
addition to alkynes. This unprecedented reactivity led to a new access to diversely substituted β-alkoxyacrylates in a highly efficient manner.
Over the past decades, the use of metal catalysts for
alkyne activation attracted much attention in organic
chemistry.1 In particular, intramolecular alkoxy addition
with the concomitant alkyl shift (formal intramolecular
carboalkoxylation) led to the development of novel cata-
lytic syntheses of various furan heterocycles and carbo-
cycles with excellent chemical efficiency.2 Despite the
notable advances in this area, the more challenging
intermolecular version of this reaction remains underde-
veloped. Recently, a number of Au-catalyzed tandem
processes have been reported which combine the intramole-
cular alkoxy addition with the concomitant allyl shift.3 A key
feature of this transformation is the efficient charge-induced
[3,3]-sigmatropic rearrangement of the oxonium-ion inter-
mediate. We envisioned that the intermolecular variant of
† Pohang University of Science and Technology.
‡ Hanyang University.
(1) For selected reviews of transition-metal-catalyzed reactions of
alkyne, see: (a) Rudolph, M.; Hashmi, A. S. K. Chem. Soc. Rev. 2012, 41,
2448. (b) Corma, A.; Leyva-Perez, A.; Sabataer, M. J. Chem. Rev. 2011,
111, 1657. (c) Sohel, S.; Md, A.; Liu, R. Chem. Soc. Rev. 2009, 38, 2269.
€
(d) Furstner, A. Chem. Soc. Rev. 2009, 38, 3208. (e) Michelet, V.;
^
Toullec, P. Y.; Genet, J. Angew. Chem., Int. Ed. 2008, 47, 4268. (f) Li,
Z.; Brouwer, C.; He, C. Chem. Rev. 2008, 108, 3239. (g) Arcadi, A. Chem.
ꢀ
ꢀ~
Rev. 2008, 108, 3266. (h) Jimenez-Nunez, E.; Echavarren, A. M. Chem.
Rev. 2008, 108, 3326. (i) Gorin, D. J.; Sherry, B. D.; Toste, F. D. Chem.
Rev. 2008, 108, 3351. (j) Gorin, D. J.; Toste, F. D. Nature 2007, 446. (k)
€
Furstner, A.; Davies, P. W. Angew. Chem., Int. Ed. 2007, 46, 3410. (l)
Hashmi, A. S. K. Chem. Rev. 2007, 107, 3180.
(3) For selected examples on the intramolecular alkoxy additionꢀ
[3.3]-sigmatropic rearrangement, see: (a) Istrate, F. M.; Gagosz, F. Beilstein
J. Org. Chem 2011, 7, 878. (b) Cheong, J. Y.; Im, D.; Lee, M.; Lim, W.;
Rhee, Y. H. J. Org. Chem. 2011, 76, 324. (c) Bae, H. J.; Baskar, B.; An, S. E.;
Cheong, J. Y.; Thangadurai, D. T.; Hwang, I.-C.; Rhee, Y. H. Angew.
Chem., Int. Ed. 2008, 47, 2263. (d) Baskar, B.; Bae, H. J.; An, S. E.; Cheong,
J. Y.; Rhee, Y. H.; Duschek, A.; Kirsch, S. F. Org. Lett. 2008, 10, 2605. (e)
Hashmi, A. S. K.; Lothschutz, C.; Dopp, R.; Ackermann, M.; Becker,
J. D. B.; Rudolph, M.; Scholz, C.; Rominger, F. Adv. Synth. Catal. 2012,
354, 133. (f) For a related study on the pyrrole formation, see: Istrrate,
F. M.; Gagosz, F. Org. Lett. 2007, 9, 3181.
(2) For selected recent examples on the Pt- or Au-catalyzed carboalk-
oxylation, see: (a) Kim, H.; Rhee, Y. H. J. Am. Chem. Soc. 2012, 134,
4011. (b) Uemura, M.; Watson, I. D. G.; Katsukawa, M.; Toste, F. D.
J. Am. Chem. Soc. 2009, 131, 3464. (c) Kim, C.; Bae, H. J.; Lee, J. H.;
Jeong, W.; Kim, H.; Sampath, V.; Rhee, Y. H. J. Am. Chem. Soc. 2009,
131, 14460. (d) Nakamura, I.; Chan, C. S.; Araki, T.; Terada, M.;
Yamamoto, Y. Adv. Synth. Catal. 2009, 351, 1089. (e) An, S. E.; Jeong,
J.; Baskar, B.; Lee, J.; Seo, J.; Rhee, Y. H. Chem.;Eur. J. 2009, 15,
€
€
ꢀ
11837. (f) Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 12062. (g)
€
Furstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024. (h)
Nakamura, I.; Mizushima, Y.; Yamamoto, Y. J. Am. Chem. Soc. 2005,
127, 15022. (i) Nakamura, I.; Sato, T.; Yamamoto, Y. Angew. Chem.,
Int. Ed. 2005, 45, 4473. (j) Nakamura, I.; Bjracharya, G. B.; Wu, h.;
Oishi, K.; Mizushima, Y.; Gridnev, I. D.; Yamamoto, Y. J. Am. Chem.
(4) Compared to allyl ethers, the more nucleophilic allyl alcohols are
known to undergo alkoxylationꢀClaisen rearrangement under Ag(I) or
Au(I) catalysis: (a) Kataoka, Y.; Matsumoto, O.; Tani, K. Chem. Lett. 1996,
727. (b) Ketcham, J. M.; Biannic, B.; Aponick, A. Chem. Commun. 2013,
DOI: 10.1039/c2cc37166a. However, these products need derivatizing steps under
highly basic conditions to obtain the corresponding β-alkoxyacrylates.
€
Soc. 2004, 126, 15423. (k) Furstner, A.; Szillat, H.; Stelzer, F. J. Am.
Chem. Soc. 2000, 122, 6785.
r
10.1021/ol4001087
Published on Web 02/27/2013
2013 American Chemical Society