Iron-Catalyzed π-Activated C–O Ether Bond Cleavage
J. H. Liu, Z. P. Li, J. Org. Chem. 2009, 74, 8848–8851; f) B.-Q.
Wang, S.-K. Xiang, Z.-P. Sun, B.-T. Guan, P. Hu, K.-Q. Zhao,
Z.-J. Shi, Tetrahedron Lett. 2008, 49, 4310–4312.
phomolybdic acid, or KMnO4 for visualization. Purification of
products was accomplished by flash chromatography on silica gel
(200–300 mesh) and the purified compounds showed a single spot
by analytical TLC. 1H NMR and 13C NMR spectra were recorded
at 400 and 100 MHz, respectively, by using CDCl3 as the solvent
with tetramethylsilane as an internal standard. High-resolution
mass spectra (HRMS) were performed with an ICP-MS or ITCI-
Orbitrap Elite spectrometer. Melting points were measured with a
micromelting apparatus.
[4] Y.-R. Luo (Ed.), Handbook of Bond Dissociation Energies in
Organic Compounds, CRC Press, Boca Raton, FL, 2005.
[5] B.-T. Guan, S.-K. Xiang, B.-Q. Wang, Z.-P. Sun, Y. Wang, K.-
Q. Zhao, Z.-J. Shi, J. Am. Chem. Soc. 2008, 130, 3268–3269.
[6] B. L. H. Taylor, E. C. Swift, J. D. Waetzig, E. R. Jarvo, J. Am.
Chem. Soc. 2011, 133, 389–391.
[7] a) H. T. Dao, U. Schneider, S. Kobayashi, Chem. Asian J. 2011,
6, 2522–2529; b) H. T. Dao, U. Schneider, S. Kobayashi, Chem.
Commun. 2011, 47, 692–694.
Typical Procedure for Iron-Catalyzed Allylation: Allyltrimethylsil-
ane (2a) (60.6 mg, 0.53 mmol, 1.5 equiv.), ether 1a–u (0.35 mmol,
1.0 equiv.), and FeCl3 (5.7 mg, 0.035 mmol, 10 mol-%) were added
successively under ambient temperature to CH2Cl2 (4 mL) in air.
After stirring at room temperature for the appropriate time (moni-
tored by TLC), the reaction was quenched by the addition of H2O
(3 mL) and then the mixture was extracted with ethyl acetate (3ϫ
3 mL). The combined organic layer was washed with brine, dried
with Na2SO4, and concentrated. The crude product was purified
by column chromatography on silica gel (petroleum ether or petro-
leum ether/ethyl acetate) to afford corresponding product 3a–u.
[8] Owing to their ready availability and high reactivity, allylsilane
reagents are employed as carbon nucleophiles in a number of
2
C–C bond-forming reactions. Traditionally, Csp -type electro-
philes such as aldehydes and ketones are used as substrates to
react with allylsilanes, namely in the Sakurai–Hosomi reaction.
For reviews and selected examples, see: a) N. V. Hanhan, Y. C.
Tang, N. T. Tran, A. K. Franz, Org. Lett. 2012, 14, 2218–2221;
b) N. Momiyama, H. Nishimoto, M. Terada, Org. Lett. 2011,
13, 2126–2129; c) U. Schneider, H. T. Dao, S. Kobayashi, Org.
Lett. 2010, 12, 2488–2491; d) J. D. Sellars, P. G. Steel, M. J.
Turner, Chem. Commun. 2006, 22, 2385–2387; e) A. Hosomi,
K. Miura, Bull. Chem. Soc. Jpn. 2004, 77, 835–851; f) S. E.
Denmark, J. Fu, Chem. Rev. 2003, 103, 2763–2794.
Supporting Information (see footnote on the first page of this arti-
cle): Detailed description of the experimental procedures and ana-
lytical data for all compounds.
[9] Some methods for allylation of secondary benzylic alcohols
with allylsilanes mediated by a catalytic amount of Lewis acid
have been reported. However, these methodologies often need
relatively costly catalysts and suffered from some undesired
competing processes, see: a) G. G. K. S. Narayana Kumar,
K. K. Laali, Org. Biomol. Chem. 2012, 10, 7347–7355; b) L. Y.
Chan, S. Kim, W. T. Chung, C. Long, S. Kim, Synlett 2011, 3,
415–419; c) V. J. Meyer, M. Niggemann, Eur. J. Org. Chem.
2011, 3671–3674; d) J. Han, Z. Cui, J. Wang, Z. Liu, Synth.
Commun. 2010, 40, 2042–2046; e) Y. Kuninobu, E. Ishii, K.
Takai, Angew. Chem. 2007, 119, 3360–3363; Angew. Chem. Int.
Ed. 2007, 46, 3296–3299; f) G. V. M. Sharma, K. L. Reddy, P. S.
Lakshmi, R. Ravi, A. C. Kunwar, J. Org. Chem. 2006, 71,
3967–3969; g) T. Saito, Y. Nishimoto, M. Yasuda, A. Baba,
J. Org. Chem. 2006, 71, 8516–8522; h) S. K. De, R. A. Gibbs,
Tetrahedron Lett. 2005, 46, 8345–8350; i) M. Yasuda, T. Saito,
M. Ueba, A. Baba, Angew. Chem. 2004, 116, 1438–1440; An-
gew. Chem. Int. Ed. 2004, 43, 1414–1416.
[10] For the allylation of benzylic acetates and N-benzylic sulfon-
amides with allylsilanes, see: a) G. Onodera, E. Yamamoto, S.
Tonegawa, M. Iezumi, R. Takeuchi, Adv. Synth. Catal. 2011,
353, 2013–2021; b) M. Rubin, V. Gevorgyan, Org. Lett. 2001,
3, 2705–2707; c) B.-L. Yang, S.-K. Tian, Chem. Commun. 2010,
46, 6180–6182.
[11] X. Fan, L.-A. Fu, N. Li, H. Lv, X.-M. Cui, Y. Qi, Org. Biomol.
Chem. 2013, 11, 2147–2153.
[12] Besides 2-phenylethyl methyl ether, other unactivated ethers
such as 1-methoxydecane and 2-methoxyundecane were also
tested in this transformation. However, these substrates re-
mained intact under high temperatures and prolonged reaction
times.
Acknowledgments
The authors thank the National Natural Science Foundation of
China (NSFC) (grant number 21162013) and Beijing National Lab-
oratory for Molecular Sciences (BNLMS) for financial support and
Prof. Zhi-Xiang Yu and Dr. Yong Liang for helpful discussions.
[1] a) D.-G. Yu, B.-J. Li, Z.-J. Shi, Acc. Chem. Res. 2010, 43, 1486–
1495, and references cited therein; b) B. M. Rosen, K. W. Quas-
dorf, D. A. Wilson, N. Zhang, A. M. Resmerita, N. K. Garg,
V. Percec, Chem. Rev. 2011, 111, 1346–1416.
[2] a) B.-J. Li, D.-G. Yu, C.-L. Sun, Z.-J. Shi, Chem. Eur. J. 2011,
17, 1728–1759; b) J. M. Nichols, L. M. Bishop, R. G. Bergman,
J. A. Ellman, J. Am. Chem. Soc. 2010, 132, 12554–12555; c)
G. A. Molander, F. Beaumard, Org. Lett. 2010, 12, 4022–4025;
d) T. Shimasaki, Y. Konno, M. Tobisu, N. Chatani, Org. Lett.
2009, 11, 4890–4892; e) B.-T. Guan, S.-K. Xiang, T. Wu, Z.-P.
Sun, B.-Q. Wang, K.-Q. Zhao, Z.-J. Shi, Chem. Commun. 2008,
1437–1439; f) A. Iijima, H. Amii, Tetrahedron Lett. 2008, 49,
6013–6015; g) S. Ueno, E. Mizushima, N. Chatani, F. Kakiu-
chi, J. Am. Chem. Soc. 2006, 128, 16516–16517; h) J. W. Dank-
wardt, Angew. Chem. 2004, 116, 2482–2486; Angew. Chem. Int.
Ed. 2004, 43, 2428–2432; i) E. Wenkert, E. L. Michelotti, C. S.
Swingdell, M. Tingoli, J. Org. Chem. 1984, 49, 4894–4899.
[3] a) C. Chen, S. H. Hong, Org. Lett. 2012, 14, 2992–2995; b) X.
Han, Y. Zhang, J. Wu, J. Am. Chem. Soc. 2010, 132, 4104–
4106; c) S. Son, F. D. Toste, Angew. Chem. 2010, 122, 3879–
3882; Angew. Chem. Int. Ed. 2010, 49, 3791–3794; d) R. E.
Mulvey, V. L. Blair, W. Clegg, A. R. Kennedy, J. Klett, L.
Russo, Nat. Chem. 2010, 2, 588–591; e) X. W. Guo, S. G. Pan,
[13] T. W. Greene, P. G. M. Wuts, Protective Groups in Organic Syn-
thesis, 3rd ed., Wiley, New York, 1999, p. 199.
Received: September 10, 2013
Published Online: December 6, 2013
Eur. J. Org. Chem. 2014, 498–501
© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
501