10.1002/anie.201706850
Angewandte Chemie International Edition
COMMUNICATION
[5]
B. R. Smith, C. M. Eastman, J. T. Njardarson, J. Med. Chem. 2014, 57,
9764-9773.
[12] (a) P. Wipf, S. Venkatraman, J. Org. Chem. 1996, 61, 6517-6522; (b) J.
R. Davies, P. D. Kane, C. J. Moody, A. M. Z. Slawin, J. Org. Chem. 2005,
70, 5840-5851; (c) Z. Jin, Nat. Prod. Rep. 2013, 30, 869-915; (c) N. David,
R. Pasceri, R. R. A. Kitson, A. Pradal, C. J. Moody, Chem. -Eur. J. 2016,
22, 10867-10876.
[6]
(a) L. Wang, W. He, Z. Yu, Chem. Soc. Rev. 2013, 42, 599-621; (b) F.
Pan, Z.-J. Shi, ACS Catal. 2014, 4, 280-288; (c) A. P. Pulis, D. J. Procter,
Angew. Chem. 2016, 128, 9996-10014; Angew. Chem., Int. Ed. 2016, 55,
9842-9860.
[13] (a) Q. Zhao, S. Liu, Y. Li, Q. Wang, J. Agric. Food Chem. 2009, 57, 2849-
2855; (b) F. Grundmann, V. Dill, A. Dowling, A. Thanwisai, E. Bode, N.
Chantratita, R. ffrench-Constant, H. B. Bode, Beilstein J. Org. Chem.
2012, 8, 749-752.
[7]
[8]
Review: P. W. Davies, M. Garzon, Asian J. Org. Chem. 2015, 4, 694-708.
[3+2] modes: (a) P. W. Davies, A. Cremonesi, L. Dumitrescu, Angew.
Chem. 2011, 123, 9093-9097; Angew. Chem., Int. Ed. 2011, 50, 8931-
8935; (b) E. Chatzopoulou, P. W. Davies, Chem. Commun. 2013, 49,
8617-8619; (c) M. Garzon, P. W. Davies, Org. Lett. 2014, 16, 4850-4853;
(d) A.-H. Zhou, Q. He, C. Shu, Y.-F. Yu, S. Liu, T. Zhao, W. Zhang, X.
Lu, L.-W. Ye, Chem. Sci. 2015, 6, 1265-1271; (e) L. Zhu, Y. Yu, Z. Mao,
X. Huang, Org. Lett. 2015, 17, 30-33; (f) Y. Wu, L. Zhu, Y. Yu, X. Luo, X.
Huang, J. Org. Chem. 2015, 80, 11407-11416; (g) S. K. Pawar, R. L.
Sahani, R.-S. Liu, Chem. - Eur. J. 2015, 21, 10843-10850; (h) H. Jin, L.
Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem.
2016, 128, 804-808; Angew. Chem., Int. Ed. 2016, 55, 794-797; (i) M.
Chen, N. Sun, H. Chen, Y. Liu, Chem. Commun. 2016, 52, 6324-6327;
(j) Y. Yu, G. Chen, L. Zhu, Y. Liao, Y. Wu, X. Huang, J. Org. Chem. 2016,
81, 8142-8154; (k) Z. Zeng, H. Jin, J. Xie, B. Tian, M. Rudolph, F.
Rominger, A. S. K. Hashmi, Org. Lett. 2017; (l) Y. Zhao, Y. Hu, X. Li, B.
Wan, Org. Biomol. Chem. 2017; (m) Y. Zhao, Y. Hu, C. Wang, X. Li, B.
Wan, J. Org. Chem. 2017, 82, 3935-3942.
[14] J. Mazuela, P. Tolstoy, O. Pamies, P. G. Andersson, M. Dieguez, Org.
Biomol. Chem. 2011, 9, 941-946.
[15] V. T. T. Huong, T. B. Tai, M. T. Nguyen, J. Phys. Chem. A 2014, 118,
3335-3343.
[16] Review: (a) S. Bresciani, N. C. O. Tomkinson, Heterocycles 2014, 89,
2479-2543; For recent examples, see: (b) T.-T. Zeng, J. Xuan, W. Ding,
K. Wang, L.-Q. Lu, W.-J. Xiao, Org. Lett. 2015, 17, 4070-4073; (c) P.
Querard, S. A. Girard, N. Uhlig, C.-J. Li, Chem. Sci. 2015, 6, 7332-7335.
[17] M. Dos Santos, P. W. Davies, Chem. Commun. 2014, 50, 6001-6004 and
references therein.
[18] 4-Methylthiooxazole synthesis: A. Herrera, R. Martínez-Alvarez, P.
Ramiro, D. Molero, J. Almy, J. Org. Chem. 2006, 71, 3026-3032.
[19] G. Zhu, W. Kong, H. Feng, Z. Qian, J. Org. Chem. 2014, 79, 1786-1795.
[20] For structural comparisons see Ref 16b; and for 5a, see: (a) Y.-m. Pan,
F.-j. Zheng, H.-x. Lin, Z.-p. Zhan, J. Org. Chem. 2009, 74, 3148-3151; for
5a’, see: (b) M. Keni, J. J. Tepe, J. Org. Chem. 2005, 70, 4211-4213.
[21] CCDC-1537012-1537014 contain the supplementary crystallographic
data for compounds 3aa, 3ga and 3lc. These data can be obtained free
of charge from The Cambridge Crystallographic Data Centre via
[9]
Related reactivity for other cycloadditions: (a) C. Shu, Y.-H. Wang, C.-H.
Shen, P.-P. Ruan, X. Lu, L.-W. Ye, Org. Lett. 2016, 18, 3254-3257; (b) J.
González, J. Santamaría, A. L. Suárez-Sobrino, A. Ballesteros, Adv.
Synth. Catal. 2016, 358, 1398-1403; (c) M. S. H. Jin, M. S. B. Tian, M. S.
X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew.
Chem. 2016, 128, 12880-12884; Angew. Chem., Int. Ed. 2016, 55,
12688-12692; (d) W.-B. Shen, X.-Y. Xiao, Q. Sun, B. Zhou, X.-Q. Zhu,
J.-Z. Yan, X. Lu, L.-W. Ye, Angew. Chem. 2017, 129, 620-624; Angew.
Chem., Int. Ed. 2017, 56, 605-609; (e) R. L. Sahani, R.-S. Liu, Angew.
Chem. 2017, 129, 1046-1050; Angew. Chem., Int. Ed. 2017, 56, 1026-
1030.
[22] Oxazole thioethers in cross-couplings, see: (a) L. N. Pridgen, Synthesis-
Stuttgart 1984, 1047-1048; (b) K. Lee, C. M. Counceller, J. P. Stambuli,
Org. Lett. 2009, 11, 1457-1459.
[23] A. D. Gillie, R. J. Reddy, P. W. Davies, Adv. Synth. Catal. 2016, 358,
226-239.
[24] Boc deprotection of 3ki and 3kj (trifluoroacetic acid/CH2Cl2, rt, 2 h)
affords elaborated pyrrolidin-2-yl oxazoles in 82% and 73% respectively.
[25] B. R. Beno, K.-S. Yeung, M. D. Bartberger, L. D. Pennington, N. A.
Meanwell, J. Med. Chem. 2015, 58, 4383-4438.
[10] (a) V. S. C. Yeh, Tetrahedron 2004, 60, 11995-12042; (b) X. Zhang, X.
Sun, H. Fan, L. Chang, P. Li, H. Zhang, W. Rao, RSC Adv. 2016, 6,
56319-56322.
[11] The Chemistry of Heterocyclic Compounds, Oxazoles: Synthesis,
Reactions and Spectroscopy, Parts A & B, (Ed. D. C. Palmer), Wiley-
Interscience, Hoboken, NJ, 2004.
[26] An analogous argument applies for an inner-sphere syn-addition of gold
and aminide across the alkyne as the stabilizing S-Au interactions would
position the S-substituent toward the alkyne C-substituent.
This article is protected by copyright. All rights reserved.