ChemComm
Communication
The present findings clearly suggest that identification of
privileged chelating scaffolds for a given metalloenzyme can
lead to the realization of both potent and selective metallo-
protein inhibitors.
We thank Dr Yongxuan Su (UCSD) and the Molecular Mass
Spectrometry Facility for obtaining mass spectrometry data,
´
Professor Eric Deziel (INRS-Institut Armand-Frappier) for kind
donation of P. aeruginosa strain PA14, and Dr David Puerta
(UCSD) for careful reading and editing of this manuscript.
This work was funded by the NIH (Grants R01 AI077644 to
K.D.J. and R01 GM098435 to S.M.C.).
Fig. 4 Inhibition of Zn2+-dependent MMP-2 (solid) and MMP-9 (lines) by a
broad-spectrum MMP inhibitor (+ control†), 2, and 7a.
Notes and references
1 Y. Morita, E. Matsumura, T. Okabe, M. Shibata, M. Sugiura, T. Ohe,
H. Tsujibo, N. Ishida and Y. Inamori, Biol. Pharm. Bull., 2003,
26, 1487.
2 J. Zhao, Curr. Med. Chem., 2007, 14, 2597.
3 R. Bentley, Nat. Prod. Rep., 2008, 25, 118.
4 F. E. Jacobsen, J. A. Lewis, K. J. Heroux and S. M. Cohen, Inorg.
Chim. Acta, 2007, 360, 262.
5 S. Chung, D. M. Himmel, J.-K. Jiang, K. Wojtak, J. D. Bauman,
J. W. Rausch, J. A. Wilson, J. A. Beutler, C. J. Thomas, E. Arnold and
S. F. J. Le Grice, J. Med. Chem., 2011, 14, 4462.
6 S. R. Piettre, C. Andre, M.-C. Chanal, J.-B. Ducep, B. Lesur, F. Piriou,
P. Raboisson, J.-M. Rondeau, C. Schelcher, P. Zimmermann and
A. J. Ganzhorn, J. Med. Chem., 1997, 40, 4208.
7 J. A. Jacobsen, J. L. Fullager, M. T. Miller and S. M. Cohen, J. Med.
Chem., 2011, 54, 590.
8 V. Kahn and A. Andrawis, Phytochemistry, 1985, 24, 905.
9 W. T. Ismaya, H. J. Rozeboom, A. Weijn, J. J. Mes, F. Fusetti,
H. J. Wichers and B. W. Dijkstra, Biochemistry, 2011, 50, 5477.
10 A. Agrawal, S. L. Johnson, J. A. Jacobsen, M. T. Miller, L. Chen,
M. Pellecchia and S. M. Cohen, ChemMedChem, 2010, 5, 195.
11 B. Wretlind and O. R. Pavlovskis, Rev. Infect. Dis., 1983, 5, S998.
12 K. Morihara, H. Tsuzuki, T. Oka, H. Inoue and M. Ebata, J. Biol.
Chem., 1965, 240, 3295.
13 N. Mesaros, P. Nordmann, P. Plesiat, M. Roussel-Delvallez, J. Van
Eldere, Y. Glupczynski, Y. Van Laethem, P. Lebecque, A. Malfroot,
P. M. Tulkens and F. Van Bambeke, Clin. Microbiol. Infect., 2007,
13, 560.
14 T. Strateva and I. Mitov, Ann. Microbiol., 2011, 61, 717.
15 D. E. Woods, S. J. Cryz, R. L. Friedman and B. H. Iglewski, Infect.
Immun., 1982, 36, 1223.
16 P. A. Sokol, C. Kooi, R. S. Hodges, P. Cachia and D. E. Woods,
J. Infect. Dis., 2000, 181, 1682.
17 S. Kamath, V. Kapatral and A. M. Chakrabarty, Mol. Microbiol., 1998,
30, 933.
18 J. Overhage, M. Bains, M. D. Brazas and R. E. W. Hancock,
J. Bacteriol., 2008, 190, 2671.
19 A. L. Garner, A. K. Struss, J. L. Fullager, A. Agrawal, A. Y. Moreno,
S. M. Cohen and K. D. Janda, ACS Med. Chem. Lett., 2012, 3, 668.
20 J. Travis and J. Potempa, Biochim. Biophys. Acta, 2000, 1477, 35.
21 A. E. Clatworthy, E. Pierson and D. T. Hung, Nat. Chem. Biol., 2007,
3, 541.
22 A. K. Barczak and D. T. Hung, Curr. Opin. Microbiol., 2009, 12, 490.
23 S. D. Bembenek, B. A. Tounge and C. H. Reynolds, Drug Discovery
Today, 2009, 14, 278.
Fig. 5 Swarming of P. aeruginosa strain PA14 in the absence (left, DMSO
control) or presence of 7a (right, 25 mM).
to enhance the susceptibility of antibiotic-resistant P. aeruginosa
to these drugs.29 To examine the anti-swarming activity of
compound 7a, P. aeruginosa strain PA14 was grown on swarm
agar plates containing either DMSO (control) or 25 mM of 7a. As
shown in Fig. 5, this tropolone-based inhibitor was able to
completely inhibit the swarming phenotype at this concentration,
exhibiting swarming inhibitory properties comparable to 2.19
Importantly, 7a was found to be non-cytotoxic to PA14 at a
concentration of 25 mM (Fig. S6†). Finally, compound 10, which
has an acetylated tropolone MBG, was found to be much less
effective at inhibiting swarming (Fig. S7†). Thus, these results
demonstrate the potential of this natural product-based chelating
moiety for the design of antimicrobial metalloprotease inhibitors.
In conclusion, tropolone-based metalloprotein inhibitors have
been developed by a chelator-focused FBDD approach. These
compounds are the most potent non-peptidic small-molecule
inhibitors of LasB reported to date and show excellent activity
in a cell-based swarming assay. Importantly, the tropolone
MBG-derived inhibitors are more active and more selective
than the previously identified HOPTO-based compounds. The
work presented here is consistent with earlier studies on
tropolone-based metalloprotein inhibitors. While the majority
of the previous tropolone-based inhibitors were identified
by screening of natural products, this study demonstrates
how use of chelator fragment libraries and sublibraries can
rapidly identify leads for the development of such inhibitors.
24 P. J. Hajduk, J. Med. Chem., 2006, 49, 6972.
25 N. Nishino and J. C. Powers, J. Biol. Chem., 1980, 255, 3482.
26 M. M. Thayer, K. M. Flaherty and D. B. McKay, J. Biol. Chem., 1991,
266, 2864.
27 S. Lai, J. Tremblay and E. Deziel, Environ. Microbiol., 2009, 11, 126.
28 M. T. Butler, Q. Wang and R. M. Harshey, Proc. Natl. Acad. Sci. U. S. A.,
2010, 107, 3776.
29 G. R. Cathcart, D. Quinn, B. Greer, P. Harriott, J. F. Lynas,
B. F. Gilmore and B. Walker, Antimicrob. Agents Chemother., 2011,
55, 2670.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun., 2013, 49, 3197--3199 3199