S. Roy et al. / Polyhedron 51 (2013) 27–40
39
UV (kmax, nm (
e
, 103 Mꢀ1 cmꢀ1) in CH3CN): 654 (0.25), 491 (0.51),
Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)
1223-336-033; or e-mail: deposit@ccpadc.cam.ac.uk. Supplemen-
tary data associated with this article can be found, in the online
355 (7.8), 285 (14.3); Magnetic moment (room temperature) data:
1.65 BM; EPR data: g||, 2.2; g\, 2.04; A||, 155 ꢂ 10–4 cmꢀ1; m/z:
780.7; C41H34Cl2CuN2O2P2: Anal. Calc.: C, 62.88; H, 4.35; N, 3.58.
Found: C, 62.85; H, 4.36; N, 3.61%.
References
4.5. X-ray crystallography
[1] R. Murray, J. Mendez, S. Brown, The Natural Coumarins: Occurrence,
Chemistry, and Biochemistry, Wiley, New York, 1982.
[2] C. Kofinas, I. Chinou, A. Loukis, C. Harvala, M. Maillard, K. Hostettmann,
Phytochemistry 48 (1998) 637.
[3] F. Cottiglia, G. Loy, D. Garan, C. Floris, M. Casu, R. Pompei, L. Bonsignore,
Phytomedicine 8 (2001) 302.
[4] Y. Tada, Y. Shikishima, Y. Takaishi, H. Shibata, T. Higuti, G. Honda, M. Ito, Y.
Takeda, O.K. Kodzhimatov, O. Ashurmetov, Y. Ohmoto, Phytochemistry 59
(2002) 649.
[5] R. Reyes-Chilpa, E. Estrada-Muniz, T.R. Apan, B. Amekraz, A. Aumelas, C.K.
Jankowski, M. Vazquez-Torres, Life Sci. 75 (2004) 1635.
[6] F.M. Al-Barwani, E.A. Eltayeb, Biochem. Syst. Ecol. 32 (2004) 1097.
[7] K. Yasunaka, F. Abe, A. Nagayama, H. Okabe, L. Lozada-Perez, E.
LopezVillafranco, E. Muniz, A. Aguilar, R. Reyes-Chilpa, J. Ethnopharmacol. 96
(2005) 293.
[8] A.C. Stein, S. Alvarez, C. Avancini, S. Zacchino, G. von Poser, J. Ethnopharmacol.
107 (2006) 95.
[9] M. Kawase, N. Motohasi, H. Sagakami, T. Kanamoto, H. Nakashima, L.Fereczy.K.
Walfard, C. Miskolci, J. Molnar, Int. J. Antimicrob. Agents 18 (2001) 161.
[10] E. Budzisz, B.K. Keppler, G. Giester, M. Wozniczka, A. Kufelnicki, B. Nawrot, Eur.
J. Inorg. Chem. (2004) 4412.
[11] G.J. Finn, E. Kenealy, B.S. Creaven, D.A. Egan, Cancer Lett. 183 (2002) 61.
[12] B. Thati, A. Noble, B.S. Creaven, M. Walsh, M. McCann, K. Kavanagh, M.
Devereux, D.A. Egan, Cancer Lett. 248 (2007) 321.
[13] G.J. Finn, B. Creaven, D.A. Egan, Melanoma Res. 11 (2001) 461.
[14] H. Itokawa, Y. Yun, H. Morita, K. Takeya, S.R. Lee, Nat. Med. 48 (1994) 334.
[15] O.D. Kachkovski, O.I. Tolmachev, L.O. Kobryn, E.E. Bila, M.I. Ganushchak, Dyes
Pigm. 63 (2004) 203.
[16] S. Roy, T.K. Mondal, P. Mitra, E.L. Torres, C. Sinha, Polyhedron 30 (2011) 913.
[17] C.D. Nicola, Effendy, F. Fazaroh, C. Pettinari, B.W. Skelton, N. Somers, A.H.
White, Inorg. Chim. Acta 358 (2005) 720.
[(L)Cu(
l
-dppm)2Cu(L)](ClO4)2 (1) (0.28 ꢂ 0.24 ꢂ 0.22 mm) and
[(L)Ag(dppe)Ag(L)](NO3)2 (4) (0.24 ꢂ 0.18 ꢂ 0.15 mm) were crys-
tallized by slow diffusion of a CH2Cl2 solution of the complexes
into hexane and [Cu(dppe)(L)]ClO4 (5) (0.33 ꢂ 0.29 ꢂ 0.26 mm)
was crystallized by slow evaporation of a methanol solution of
the complex. Data were collected on a Bruker Smart Apex II CCD
Area Detector at 293(2) K. Diffractions were recorded with 2h in
the range 3.18 6 2h 6 49.22 (1), 3.66 6 2h 6 50 (4) and
2.98 6 2h 6 52 (5). A fine-focus sealed tube was used as the radia-
tion source of the graphite-monochromatized Mo K
a radiation
(k = 0.71073 Å). Data were corrected for Lorentz and polarization
effects and an empirical absorption correction in the hkl range:
ꢀ15 6 h 6 15; ꢀ17 6 k 6 17; ꢀ27 6 l 6 27 for 1, ꢀ24 6 h 6 24;
ꢀ15 6 k 6 15; ꢀ24 6 l 6 24 for 4 and ꢀ12 6 h 6 12; ꢀ17 6 k 6 16;
ꢀ18 6 l 6 18 for 5. The structures were solved and refined by full-
matrix least-squares techniques on F2 using the SHELX-97 program
with anisotropic displacement parameters for all non-hydrogen
atoms [39,40]. Crystallographic refinement data and selected geo-
metric parameters are collected in Table 5. Hydrogen atoms were
constrained to ride on the respective carbon atoms with isotropic
displacement parameters equal to 1.2 times the equivalent isotro-
pic displacement of their parent atom for all the aromatic units.
4.6. Theoretical calculations
[18] D. Sarvanabharati, Monika, P. Venugopalan, A.G. Samuelson, Polyhedron 21
(2002) 2433.
[19] K. Chen, Y.-M. Cheng, Y. Chi, M.-L. Ho, C.-H. Lai, P.-T. Chou, S.-M. Peng, G.-H.
Lee, Chem. Asian J. 2 (2007) 155.
[20] J. Guerrero, L. Cortez, L. Lemus, L. Farías, J. Costamagna, C. Pettinari, M. Rossi, F.
Caruso, Inorg. Chim. Acta 363 (2010) 3809.
Full geometry optimization of [Cu(dppe)(L)]ClO4 (5) and single
point calculations of [(L)Cu(l-dppm)2Cu(L)](ClO4)2 (1) and
[(L)Ag(dppe)Ag(L)](NO3)2 (4) were carried out using density func-
tional theory (DFT) at the B3LYP level [41–43]. All calculations
were carried out using the GAUSSIAN 03 program package [44] with
the aid of the GAUSS VIEW visualization program [45]. For C, H, N, O
and P atoms the 6-31G(d) basis sets were assigned, while for Cu
and Ag the LanL2DZ basis sets with effective core potential were
employed [46]. The vibrational frequency calculations were per-
formed to ensure that the optimized geometries represent the local
minima and there are only positive eigen values. Vertical electronic
excitations based on B3LYP optimized geometries were computed
for [Cu(dppe)(L)]ClO4 (5) using the time-dependent density func-
tional theory (TD-DFT) formalism [47–49] in acetonitrile using a
conductor-like polarizable continuum model (CPCM) [50–52].
GAUSS SUM was used to calculate the fractional contributions of var-
ious groups to each molecular orbital [53].
[21] R. Gupta, S. Mukherjee, R. Mukherjee, J. Chem. Soc., Dalton Trans. (1999) 4025.
[22] P.K. Santra, D. Das, T.K. Misra, R. Roy, C. Sinha, S.-M. Peng, Polyhedron 18
(1999) 1909.
[23] S. Goswami, W. Kharmawphlang, A.K. Deb, S.M. Peng, Polyhedron 15 (1996)
3635.
[24] J. Dinda, U.S. Ray, G. Mostafa, Tian -Huey Lu, A. Usman, I. Abdul Razak, S.
Chantrapromma, H.-K. Fun, C. Sinha, Polyhedron 22 (2003) 247.
[25] H. Yersin, A.F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coord. Chem. Rev.
255 (2011) 2622.
[26] A.L. Cambot, Martine Cantuel, Yoann Leydet, G. Jonusauskasb, D.M. Bassania,
N.D. McClenaghan, Coord. Chem. Rev. 252 (2008) 2572.
[27] J.-L. Chen, X.-F. Cao, W. Gu, B.-T. Su, F. Zhang, H.-R. Wen, R. Hong, Inorg. Chem.
Commun. 15 (2012) 65.
[28] J.L. Klappa, S.A. Geers, S.J. Schmidtke, L.A. MacManus-Spencer, K. McNeill,
Dalton Trans. (2004) 883.
[29] Hongyan Wang, Pusu Zhao, Delong Shao, Jing Zhang, Yulan Zhu, Struct. Chem.
20 (2009) 995.
[30] Gianluca Ambrosi, Samuele Ciattini, Mauro Formica, Vieri Fusi, Luca Giorgi.
Eleonora Macedi, Mauro Micheloni, Paola Paoli, Patrizia Rossi, Giovanni
Zappia, Chem. Commun. (2009) 7039.
[31] G. Matsubayashi, T. Maikawa, H. Tamura, M. Nakano, R. Arakawa, J. Chem. Soc.,
Dalton Trans. (1996) 1539.
Acknowledgments
[32] K.C. Tran, J.P. Battioni, J.L. Zimmermann, C. Bois, G.J.A.A. Koolhaas, P. Leduc, E.
Mulliez, H. Boumchita, J. Reedijk, J.C. Chottard, Inorg. Chem. 33 (1994) 2808.
[33] B. Adhikari, C.R. Lucas, Inorg. Chem. 33 (1994) 1376.
[34] E.I. Solomon, A.B.P. Lever (Eds.), Inorganic Electronic Structure and
Spectroscopy, vol. 1 & 2, John Wiley, 1999.
[35] A.I. Vogel, A Text Book of Practical Organic Chemistry, Longman, London, 1959.
[36] J.N. Demas, G.A. Crosby, J. Phys. Chem. 75 (1971) 991.
[37] D.V. O’Connor, D. Phillips, Time Correlated Single Photon Counting, Academic
Press, New York, 1984.
[38] B. Valuer, Molecular Fluorescence. Principles and Applications, Wiley-VCH,
Weinheim, 2001.
[39] G.M. Sheldrick, SHELXS97. Program for the solution of crystal structure,
University of Göttingen, 1997.
Financial support from CSIR, UGC and PURSE New Delhi are
thankfully acknowledged. Thanks are given to Prof. Nitin Chatto-
padhyay, Department of Chemistry, Jadavpur University for life-
time study.
Appendix A. Supplementary material
CCDC 847595, 847596 and 847594 contain the supplementary
crystallographic data for for [(L)Cu(l-dppm)2Cu(L)](ClO4)2 (1),
[40] G.M. Sheldrick, SHELXL97. Program for crystal structure refinement, University
of Göttingen, Germany, 1997.
[41] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[(L)Ag( -dppe)Ag(L)](NO3)2 (4) and for Cu(dppe)(L)]ClO4 (5). These
l
[42] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.