1914
R. A. Unhale et al. / Tetrahedron Letters 54 (2013) 1911–1915
O
thanks the Council of Scientific and Industrial Research (CSIR),
New Delhi for a S. P. Mukharjee fellowship. N.K.R. thanks the CSIR
for a senior research fellowship (SRF). We thank Dr. Vishnumaya
Bisai (IISER Bhopal), Atanu Dey, and Sumit K. Ray (IIT Kanpur) for
their help.
O
O
O
2 N HCl,
ref. 9d
120 °C, 6 h
HS
N
AcS
N
O
HS
OH
80% yield
HO2C
4
3a-(S)
87% ee
87% ee
Captopril
Supplementary data
O
1h (0.5 mol %), AcSH,
O
N
O
O
toluene, 0 °C, 6 d
N
Supplementary data associated with this article can be found, in
*
O
O
90% yield
O
AcS
O
71% ee
5
6
Scheme 2. Applications of the addition/protonation products.
References and notes
1. (a)The Total Synthesis of Natural Products; ApSimon, J., Ed.; John Wiley & Sons:
Ottawa, 1992; Vol. 9, (b) Jamali, F.; Mehvar, R.; Russell, A. S.; Sattari, S.;
Yakimets, W. W.; Koo, J. J. Pharm. Sci. 1992, 81, 221; (c) Harrison, I. T.; Lewis, B.;
Nelson, P.; Rooks, W.; Roszkowoski, A.; Tomolonis, A.; Fried, J. H. J. Med. Chem.
1970, 13, 203.
2. (a) Duhamel, L.; Duhamel, P.; Plaquevent, J.-C. Tetrahedron: Asymmetry 2004,
15, 3653; (b) Mohr, J. T.; Hong, A. Y.; Stoltz, B. M. Nat. Chem. 2009, 1, 359.
3. For selected examples, see: (a) Duhamel, L.; Plaquevent, J.-C. J. Am. Chem. Soc.
1978, 100, 7415; (b) Ishihara, K.; Nakamura, S.; Kaneeda, M.; Yamamoto, H. J.
Am. Chem. Soc. 1996, 118, 12854; (c) Yanagisawa, A.; Watanabe, T.; Kikuchi, T.;
Yamamoto, H. J. Org. Chem. 2000, 65, 2979.
N
N
CF3
CF3
S
N
S
N
H
H
N
F3C
N
H
N
H
O
N
H
N
H
O
F3C
N
H
H
O
O
SAc
SAc
O
O
R1
R1
4. For recent examples, see: (a) Vedejs, E.; Kruger, A. W.; Lee, N.; Sakata, S. T.; Stec,
M.; Suna, E. J. Am. Chem. Soc. 2000, 122, 4602; (b) Wang, W.; Xu, M.-H.; Lei, X.-
S.; Lin, G.-Q. Org. Lett. 2000, 2, 3773; (c) Reynolds, N. T.; Rovis, T. J. Am. Chem.
Soc. 2005, 127, 16406; (d) Poisson, T.; Dalla, V.; Marsais, F.; Dupas, G.; Oudeyer,
S.; Levacher, V. Angew. Chem., Int. Ed. 2007, 46, 7090; (e) Cheon, C. H.;
Yamamoto, H. J. Am. Chem. Soc. 2008, 130, 9246; (f) Poisson, T.; Gembus, V.;
Dalla, V.; Oudeyer, S.; Levacher, V. J. Org. Chem. 2010, 75, 7704; (g) Cheon, C. H.;
Imahori, T.; Yamamoto, H. Chem. Commun. 2010, 46, 6980; (h) Uraguchi, D.;
Kinoshita, N.; Ooi, T. J. Am. Chem. Soc. 2010, 132, 12240.
5. (a) Ferreira, P. M. T.; Maia, H. L. S.; Monteiro, L. S.; Sacramento, J. J. Chem. Soc.,
Perkin Trans. 1 2001, 3167; (b) Belokon, Y. N.; Harutyunyan, S.; Vorontsov, E. V.;
Peregudov, A. S.; Chrustalev, V. N.; Kochetkov, K. A.; Pripadchev, D.; Sagyan, A.
S.; Beck, A. K.; Seebach, D. ARKIVOC 2004, 132; (c) Hamashima, Y.; Somei, H.;
Shimura, Y.; Tamura, T.; Sodeoka, M. Org. Lett. 2004, 6, 1861; (d) Navarre, L.;
Darses, S.; Genet, J.-P. Angew. Chem., Int. Ed. 2004, 43, 719; (e) Sibi, M. P.;
Tatamidani, H.; Patil, K. Org. Lett. 2005, 7, 2571; (f) Frost, C. G.; Penrose, S. D.;
Lambshead, K.; Raithby, P. R.; Warren, J. E.; Gleave, R. Org. Lett. 2007, 9, 2119;
(g) Navarre, L.; Martinez, R.; Genet, J.-P.; Darses, S. J. Am. Chem. Soc. 2008, 130,
6159; (h) Morita, M.; Drouin, L.; Motoki, R.; Kimura, Y.; Fujimori, I.; Kanai, M.;
Shibasaki, M. J. Am. Chem. Soc. 2009, 131, 3858; (i) Poisson, T.; Yamashita, Y.;
Kobayashi, S. J. Am. Chem. Soc. 2010, 132, 7890; (j) Duan, S.-W.; An, J.; Chen, J.-
R.; Xiao, W.-J. Org. Lett. 2011, 13, 2290.
7
Delivery of proton to the top face
N
(Si face) of the enolate
H
H
N
O
H
O
S
N
H
H
SAc
R1
H
N
SAc
O
O
F3C
N
R1
N
O
O
7
CF3
Figure 2. Possible transition state model.
scribed for the treatment of hypertension (Scheme 2).9d Reaction
between 2-phthalimidoacrylate derivative 5 and thioacetic acid
under optimized conditions yielded the corresponding product 6
in good enantiomeric excess (71% ee) enabling a direct access to
enantioenriched cysteine derivative (Scheme 2).
A plausible transition state model to explain the high stereo-
chemical outcome of the reaction is shown in Figure 2. We believe
that the bifunctional catalyst simultaneously activates thioacetic
acid through acid–base interaction and Michael acceptor 2 via dou-
ble H-bondings. Initial conjugate addition of nucleophile to 2 gen-
erates a transient ion pair 7. Subsequent delivery of the proton
from the quinuclidine nitrogen to the top face (Si face) of the gen-
erated prochiral enolate leads to the formation of the major stereo-
isomer (Fig. 2).
6. (a) Ondetti, M. A.; Rubin, B.; Cushman, D. W. Science 1977, 196, 411; (b)
Cushman, D. W.; Cheung, H. S.; Sabo, E. F.; Ondetti, M. A. Biochemistry 1977, 16,
5484; (c) Park, J. D.; Kim, D. H. J. Med. Chem. 2002, 45, 911.
7. For review see: (a) Enders, D.; Lüttgen, K.; Narine, A. A. Synthesis 2007, 959; (b)
Clayden, J.; MacLellan, P. Beilstein J. Org. Chem. 2011, 7, 582; For recent
examples see: (c) Wang, W.; Li, H.; Wang, J.; Zu, L. J. Am. Chem. Soc. 2006, 128,
10354; (d) Zu, L.; Wang, J.; Li, H.; Xie, H.; Jiang, W.; Wang, W. J. Am. Chem. Soc.
2007, 129, 1036; (e) Ricci, P.; Carlone, A.; Bartoli, G.; Bosco, M.; Sambri, L.;
Melchiorre, P. Adv. Synth. Catal. 2008, 350, 49; (f) Lu, H.-H.; Zhang, F.-G.; Meng,
X.-G.; Duan, S.-W.; Xiao, W.-J. Org. Lett. 2009, 11, 3946; (g) Liu, Y.; Sun, B.;
Wang, B.; Wakem, M.; Deng, L. J. Am. Chem. Soc. 2009, 131, 418; (h) Kimmel, K.
L.; Robak, M. T.; Ellman, J. A. J. Am. Chem. Soc. 2009, 131, 8754; (i) Dai, L.; Wang,
S.-X.; Chen, F.-E. Adv. Synth. Catal. 2010, 352, 2137; (j) Hui, Y.; Jiang, J.; Wang,
W.; Chen, W.; Cai, Y.; Lin, L.; Liu, X.; Feng, X. Angew. Chem., Int. Ed. 2010, 49,
4290; (k) Rana, N. K.; Selvakumar, S.; Singh, V. K. J. Org. Chem. 2010, 75, 2089;
(l) Ingle, G. K.; Mormino, M. G.; Wojtas, L.; Antilla, J. C. Org. Lett. 2011, 13, 4822;
(m) Bonollo, S.; Lanari, D.; Pizzo, F.; Vaccaro, L. Org. Lett. 2011, 13, 2150; (n)
Tian, X.; Cassani, C.; Liu, Y.; Moran, A.; Urakawa, A.; Galzerano, P.; Arceo, E.;
Melchiorre, P. J. Am. Chem. Soc. 2011, 133, 17934; (o) Zhao, F.; Zhang, W.; Yang,
Y.; Pan, Y.; Chen, W.; Liu, H.; Yan, L.; Tan, C.-H.; Jiang, Z. Adv. Synth. Catal. 2011,
353, 2624; (p) Dai, L.; Yang, H.; Chen, F. Eur. J. Org. Chem. 2011, 5071; (q) Ueno,
M.; Kitanosono, T.; Sakai, M.; Kobayashi, S. Org. Biomol. Chem. 2011, 9, 3619; (r)
Rana, N. K.; Unhale, R.; Singh, V. K. Tetrahedron Lett. 2012, 53, 2121; (s) Palacio,
C.; Connon, S. J. Chem. Commun. 2012, 48, 2849; For diastereoselectiove sulfa-
Michael addition see: (t) Wang, J.; Xie, H.; Li, H.; Zu, L.; Wang, W. Angew. Chem.,
Int. Ed. 2008, 47, 4177; Tandem thio-amination reaction, see: (u) Galzerano, P.;
Pesciaioli, F.; Mazzanti, A.; Bartoli, G.; Melchiorre, P. Angew. Chem., Int. Ed. 2009,
48, 7892.
In conclusion, we have developed an effective catalytic conju-
gate addition of thioacetic acid to a range of a-substituted N-acry-
loyloxazolidin-2-ones 2 followed by enantioselective protonation
using thiourea catalyst 1h derived from cinchona alkaloid. This ap-
proach offers several advantages such as operational simplicity,
low catalyst loading (0.5 mol %), and the products were obtained
in high to excellent enantioselectivities (up to 97% ee) with almost
quantitative yields. It is noteworthy that both enantiomers of addi-
tion/protonation products could be obtained with the same level of
enantioselectivities. The synthetic utility of the present catalytic
asymmetric protonation reaction was established by transforming
the products to useful intermediates of biological importance.
8. (a) Tsai, W.-J.; Lin, Y.-T.; Uang, B.-J. Tetrahedron: Asymmetry 1994, 5, 1195; (b)
Emori, E.; Arai, T.; Sasai, H.; Shibasaki, M. J. Am. Chem. Soc. 1998, 120, 4043; (c)
Henze, R.; Duhamel, L.; Lasne, M.-C. Tetrahedron: Asymmetry 1997, 8, 3363; (d)
Nishimura, K.; Ono, M.; Nagaoka, Y.; Tomioka, K. Angew. Chem., Int. Ed. 2001, 40,
440; (e) Kumar, A.; Salunkhe, R. V.; Rane, R. A.; Dike, S. Y. J. Chem. Soc., Chem.
Commun. 1991, 485; (f) Dai, L.; Yang, H.; Niu, J.; Chen, F.-E. Synlett 2012, 314;
Acknowledgments
V.K.S. thanks the Department of Science and Technology (DST),
India for a research grant through J. C. Bose fellowship. R.A.U.