ChemComm
Communication
The highest cellular uptake ability and transfection efficacy of G3
was explained by bigger outer branches and more positive charges.
These dendrimers had remarkable gene transfection efficiency with
low cytotoxicity, and would be applied to live animals to explore the
potential gene therapy in ongoing experiments.
This work was financially supported by the National Science
Foundation of China (no. 21174012, 51103008 and 51221002),
Special Fund for Agro-scientific Research in the Public Interest
(no. 201003025), the 973 Program (2013CB127603), the
New Century Excellent Talents Award Program from Ministry
of Education of China (NCET-10-0215 and 09-0734) and
the Doctoral Program of Higher Education Research Fund
(20100010120006, 20120010110008).
Notes and references
Fig. 2 Gene transfection assay of dendrimers. Fluorescence images (A–C) of the
G3–DNA complex internalizing into cells after 48 h incubation (2 mM G3, 100 mM
DNA, N/P = 8 : 1). (A) G3 fluorescence image (red). (B) CXR Reference Dye labeled
DNA (blue). (C) Merged channels of (A) and (B). (D) Fluorescence intensities of
dendrimer–DNA complexes internalizing into cells after 48 h incubation (2 mM
dendrimer, 100 mM DNA, N/P = 8 : 1). The data were mean Æ SEM.
1 (a) M. D. Yilmaz, O. A. Bozdemir and E. U. Akkaya, Org. Lett., 2006,
8, 2871; (b) O. A. Bozdemir, M. D. Yilmaz, O. Buyukcakir,
A. Siemiarczuk, M. Tutas and E. U. Akkaya, New J. Chem., 2010,
34, 151; (c) L. Zhu, W. Wu, M. Q. Zhu, J. J. Han, J. K. Hurst and
D. Q. Li, J. Am. Chem. Soc., 2007, 129, 3524.
2 (a) G. Schnurpfeil, J. Stark and D. Wlhrle, Dyes Pigm., 1995, 27, 339;
(b) H. Langhals, W. Jona, F. Einsiedl and S. Wohnlich, Adv. Mater.,
1998, 10, 1022.
3 (a) C. Kohl, T. Weil, J. Qu and K. Mu¨llen, Chem.–Eur. J., 2004,
10, 5297; (b) J. Qu, C. Kohl, M. Pottek and K. Mu¨llen, Angew. Chem.,
Int. Ed., 2004, 43, 1528; (c) S. Rehm, V. Stepanenko, X. Zhang,
T. H. Rehm and F. Wu¨rthner, Chem.–Eur. J., 2010, 16, 3372;
ratios of 1:1, 2:1, 4:1 and 8:1, respectively. Gene transfection
efficacies of dendrimer–DNA complexes were visualized by fluorescent
tracing of the cellular distribution of dendrimer and CXR Reference
Dye labeled DNA. After 48 h incubation, G3 showed effective transfec-
tion activity at all N/P ratios. At a N/P ratio of 8 : 1, G3 showed the most
efficient gene transfection (Fig. 2A–C). G2 showed intermediate
efficacy of gene transfection. The gene transfection efficacies of G1,
G2, and G3 have been proved by the quantified fluorescence intensity
of CXR Reference Dye labeled DNA inside the cells (Fig. 2D). The
results clearly highlighted remarkable transfection efficacies of G2
and G3. By comparing with previous neutral hydrophilic dendrimers,7
our cationic dendrimers could bind DNA and be internalized into
cells, thus, serving as gene carriers.
The cytotoxicities of dendrimers were assessed by the Talit
viability assay. As shown in Fig. S4A (ESI†), the white arrows denoted
apoptotic cells which were stained by the dye, Dead Cell Green, in
the Talit kit. G1, G2, and G3 all showed low cytotoxicity at
concentrations of 2 mM, 4 mM and 6 mM after 48 h (Fig. S4B, ESI†).
The cell viability of G3 was 94.3%, 93.7%, 92.2% at concentrations of
2 mM, 4 mM, and 6 mM, respectively. The cytotoxicity of G3 was
relatively higher than that of G1 and G2, in accordance with high
generation dendrimers usually possessing relatively high cytotoxicity
to transfected cells.15 Although the complexation of dendrimer with
DNA caused additional cytotoxicity to cells compared with cells
treated by dendrimer only, the cell viability is still high (>93%) as
seen in Fig. S4C (ESI†).
¨
(d) C. D. Schmidt, C. Bottcher and A. Hirsch, Eur. J. Org. Chem.,
2007, 5497; (e) C. Backes, C. D. Schmidt, F. Hauke, C. Bottcher and
A. Hirsch, J. Am. Chem. Soc., 2009, 131, 2172.
4 (a) S. Demmig and H. Langhals, Chem. Ber., 1988, 121, 225;
(b) H. Kobayashi, M. Ogawa, R. Alford, P. L. Choyke and Y. Urano,
Chem. Rev., 2010, 110, 2620.
5 (a) M. Yin, J. Shen, G. O. Pflugfelder and K. Mu¨llen, J. Am. Chem.
Soc., 2008, 130, 7806; (b) M. Yin, C. R. W. Kuhlmann, K. Sorokina,
C. Li, G. Mihov, E. Pietrowski, K. Koynov, M. Klapper,
H. J. Luhmann, K. Mu¨llen and T. Weil, Biomacromolecules, 2008,
9, 1381; (c) M. Yin, J. Shen, R. Gropeanu, G. O. Pflugfelder, T. Weil
and K. Mu¨llen, Small, 2008, 4, 894.
6 F. Wurm and H. Frey, Prog. Polym. Sci., 2011, 36, 12.
7 (a) T. Heek, C. Fasting, C. Rest, X. Zhang, F. Wu¨rthner and R. Haag,
Chem. Commun., 2010, 46, 1884; (b) B. Gao, H. Li, H. Liu, L. Zhang,
Q. Bai and X. Ba, Chem. Commun., 2011, 47, 3894; (c) S. K. Yang,
X. Shi, S. Park, S. Doganay, T. Ha and S. C. Zimmerman, J. Am. Chem.
Soc., 2011, 133, 9964.
8 (a) D. J. Welsh, S. P. Jones and D. K. Smith, Angew. Chem., Int. Ed.,
2009, 48, 4047; (b) M. Ye, Y. Qian, Y. Shen, H. Hu, M. Sui and J. Tang,
J. Mater. Chem., 2012, 22, 14369.
´
9 H. A. Klok, J. R. Hernanedz, S. Becker and K. Mu¨llen, J. Polym. Sci.,
Part A, 2001, 39, 1572.
10 X. Ma, J. Tang, Y. Shen, M. Fan, H. Tang and M. Radosz, J. Am. Chem.
Soc., 2009, 131, 14795.
11 (a) A. Akinc, D. M. Lynn, D. G. Anderson and R. Langer, J. Am. Chem.
Soc., 2003, 125, 5316; (b) N. Wang, A. Dong, M. Radosz and Y. Shen,
J. Biomed. Mater. Res., Part A, 2007, 84, 148.
12 N. Wang, A. J. Dong, H. D. Tang, K. E. A. Van, P. A. Johnson,
W. J. Murdoch, M. Radoaz and Y. Shen, Macromol. Biosci., 2007,
7, 1187.
13 (a) F. P. Seib, A. T. Jones and R. Duncan, J. Controlled Release, 2007,
117, 291; (b) S. Rathgeber, M. Monkenbusch, M. Kreitschmann,
V. Urban and A. Brulet, Chem. Phys., 2002, 117, 4047;
(c) D. A. Tomalia, A. M. Naylor and W. A. Goddard III, Angew. Chem.,
Int. Ed. Engl., 1990, 29, 138.
14 (a) M. Yin, C. Feng, J. Shen, Y. Yu, Z. Xu, W. Yang, W. Knoll and
K. Mu¨llen, Small, 2011, 7, 1629; (b) Y. Yu, M. Yin, K. Mu¨llen and
W. Knoll, J. Mater. Chem., 2012, 22, 7880; (c) C. Feng, M. Yin,
D. Zhang, S. Zhu, A. M. Caminade, J. P. Majoral and K. Mu¨llen,
Macromo. Rapid Comm., 2011, 32, 679.
In conclusion, the synthesis and optical properties of novel
water-soluble PDI-cored dendrimers bearing positive charges were
reported. The aggregation of the encapsulated PDI chromophores
was noticeably suppressed by outer cationic dendrimers, thus
leading to the enhancement of optical performances in water.
The fluorescence detection, water solubility, and low cytotoxicity,
together with biodegradability of polyester units, are the prime
attractions for bio-applications. All dendrimers could rapidly
internalize into live cells with high efficacy of gene transfection.
15 H. Liu, H. Wang, W. Yang and Y. Cheng, J. Am. Chem. Soc., 2012,
134, 17680.
c
3648 Chem. Commun., 2013, 49, 3646--3648
This journal is The Royal Society of Chemistry 2013