Journal of the American Chemical Society
Article
(b) Chen, C.-T.; Kuo, J.-H.; Ku, C.-H.; Weng, S.-S.; Liu, C.-Y. J. Org.
Chem. 2005, 70, 1328. (c) Ishihara, K.; Niwa, M.; Kosugi, Y. Org. Lett.
2008, 10, 2187. (d) Kondaiah, G. C. M.; Reddy, L. A.; Babu, K. S.;
Gurav, V. M.; Huge, K. G.; Bandichhor, R.; Reddy, P. P.; Bhattacharya,
A.; Anand, R. V. Tetrahedron Lett. 2008, 49, 106. (e) Magens, S.;
Ertelt, M.; Jatsch, A.; Plietker, B. Org. Lett. 2008, 10, 53. (f) Magens,
S.; Plietker, B. J. Org. Chem. 2010, 75, 3715. (g) Weng, S.-S.; Ke, C.-S.;
Chen, F.-K.; Lyu, Y.-F.; Lin, G.-Y. Tetrahedron 2011, 67, 1640.
(4) For selected examples, see: (a) Kuroki, Y.; Ishihara, K.; Hanaki,
N.; Ohara, S.; Yamamoto, H. Bull. Chem. Soc. Jpn. 1998, 71, 1221.
(b) Han, C.; Lee, J. P.; Lobkovsky, E.; Porco, J. A., Jr. J. Am. Chem. Soc.
2005, 127, 10039. (c) Sabot, C.; Kumar, K. A.; Meunier, S.;
Mioskowski, C. Tetrahedron Lett. 2007, 48, 3863. (d) Movassaghi,
CONCLUSION
■
The findings of the present study indicate that some
carboxylate compounds of first-row late transition metals,
such as Mn(II), Fe(II), Co(II), and Cu(I), exhibit unique O-
selectivity with appropriately high catalytic activity in the
transesterification of alcohols in the presence of primary or
secondary amines. In such catalytic systems, the addition of
amines was essential to produce high catalytic activity, and
among them, cobalt was the best metal in terms of not only
catalytic activity and chemoselectivity but also its applicability
for mechanistic studies, leading us to select the system of
octanuclear cobalt clusters 2c and 8a. Transesterification
catalyzed by the combined system of 2c and 8a proceeded
through the formation of the key intermediate alkoxide-bridged
cobalt dinuclear complex 10, which performed enzyme-like
catalysis following the Michaelis−Menten mechanism via a
ternary complex formation. We also confirmed that the
advantages of cluster complexes as catalyst precursors are the
deprotonation ability of the basic μ-oxo moieties in the cobalt
cluster and stabilization of the alkoxy ligand by bridged
dinuclear complexation. Deprotonation of nucleophiles was
thus the most important step not only for achieving high
catalytic activity but also for determining the chemoselectivity,
resulting in the chemical differentiation of alcohols and amines.
́
M.; Schmidt, M. A. Org. Lett. 2005, 7, 2453. (e) Price, K. E.; Larrivee-
Aboussafy, C.; Lillie, B. M.; McLaughlin, R. W.; Mustakis, J.;
Hettenbach, K. W.; Hawkins, J. M.; Vaidyanathan, R. Org. Lett.
2009, 11, 2003. (f) Yang, X.; Birman, V. B. Org. Lett. 2009, 11, 1499.
(g) Ohshima, T.; Hayashi, Y.; Agura, K.; Fujii, Y.; Yoshiyama, A.;
Mashima, K. Chem. Commun. 2012, 48, 5434.
(5) Gardossi, L.; Bianchi, D.; Klibanov, A. M. J. Am. Chem. Soc. 1991,
113, 6328.
(6) (a) Iwasaki, T.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.; Mashima,
K. J. Org. Chem. 2008, 73, 5147. (b) Iwasaki, T.; Maegawa, Y.; Hayashi,
Y.; Ohshima, T.; Mashima, K. Synlett 2009, 10, 1659. (c) Iwasaki, T.;
Agura, K.; Maegawa, Y.; Hayashi, Y.; Ohshima, T.; Mashima, K.
Chem.Eur. J. 2010, 16, 11567. (d) Hayashi, Y.; Ohshima, T.; Fujii,
Y.; Matsushima, Y.; Mashima, K. Catal. Sci. Technol. 2011, 1, 230.
(e) Maegawa, Y.; Agura, K.; Hayashi, Y.; Ohshima, T.; Mashima, K.
Synlett 2012, 23, 137.
ASSOCIATED CONTENT
* Supporting Information
Characterization data for all new compounds, synthetic
procedures, detailed experimental data, crystallographic data
(CIF) for 9−11, and Computational details and Cartesian
coordinates of all stationary points. These materials are
■
S
(7) Ohshima, T.; Iwasaki, T.; Maegawa, Y.; Yoshiyama, A.; Mashima,
K. J. Am. Chem. Soc. 2008, 130, 2944.
(8) Maegawa, Y.; Ohshima, T.; Hayashi, Y.; Agura, K.; Iwasaki, T.;
Mashima, K. ACS Catal. 2011, 1, 1178.
(9) Lin, M. -H.; RajanBabu, T. V. Org. Lett. 2000, 2, 997.
(10) Hatano, M.; Furuya, Y.; Shimmura, T.; Moriyama, K.; Kamiya,
S.; Maki, T.; Ishihara, K. Org. Lett. 2011, 13, 426.
(11) Further studies of Cu(I) and Mn(II) systems are in progress.
(12) Sidorov, A. A.; Fomina, I. G.; Ponina, M. O.; Aleksandrov, G.
G.; Nefedov, S. E.; Eremenko, I. L.; Moiseev, I. I. Russ. Chem. Bull., Int.
Ed. 2000, 49, 958.
AUTHOR INFORMATION
Corresponding Author
■
(13) Blake, A. B. Chem. Commun. (London) 1966, 569.
(14) Fomina, I. G.; Aleksandrov, G. G.; Dobrokhotova, Zh. V.;
Proshenkina, O. Yu.; Kiskin, M. A.; Velikodnyi, Yu. A.; Ikorskii, V. N.;
Novotortsev, V. M.; Eremenko, I. L. Russ. Chem. Bull., Int. Ed 2006, 55,
1909.
(15) Dobrokhotova, Zh. V.; Fomina, I. G.; Kiskin, M. A.; Sidorov, A.
A.; Novotortsev, V. M.; Eremenko, I. L. Russ. Chem. Bull., Int. Ed.
2006, 55, 256.
(16) Mikhailova, T. B.; Malkov, A. E.; Sidorov, A. A.; Fomina, I. G.;
Aleksandrov, G. G.; Golovaneva, I. F.; Demyanovich, V. M.;
Novotortsev, V. M.; Ikorskii, Eremenko, I. L. Russ. J. Inorg. Chem.
2002, 47, 1829.
(17) Aleksandrov, G. G.; Fomina, I. G.; Sidorov, A. A.; Mikhailova, T.
B.; Zhilov, V. I.; Ikorskii, V. N.; Novotortsev, V. M.; Eremenko, I. L.;
Moiseev, I. I. Russ. Chem. Bull., Int. Ed. 2004, 53, 1200.
(18) Lineweaver, H.; Burk, D. J. Am. Chem. Soc. 1934, 56, 658.
(19) Dixon, M. Biochem. J. 1953, 55, 170.
(20) (a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. (b) Lee, C.;
Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785. (c) Grimme, S. J.
Comput. Chem. 2006, 27, 1787.
(21) (a) Orita, A.; Mitsutome, A.; Otera, J. J. Org. Chem. 1998, 63,
2420. (b) Otera, J.; Danoh, N.; Nozaki, H. J. Org. Chem. 1991, 56,
5307. (c) Otera, J.; Yano, T.; Kawabata, A.; Nozaki, H. Tetrahedron
Lett. 1986, 27, 2383. (d) Otera, J. Acc. Chem. Res. 2004, 37, 288.
(e) Xiang, J.; Orita, A.; Otera, J. Adv. Synth. Catal. 2002, 344, 84.
(f) Xiang, J.; Toyoshima, S.; Orita, A.; Otera, J. Angew. Chem., Int. Ed.
2001, 40, 3670.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the Core Research for Evolutional
Science and Technology (CREST) program of the Japan
Science and Technology Agency (JST), Japan. Y.H. is the
grateful recipient of a scholarship from JSPS (DC1; 2010
2012). S.S and F. H. acknowledge financial support from the
Swedish Research Council and the Goran Gustafsson and Knut
̈
and Alice Wallenberg Foundations. Computer time was
generously provided by the Swedish National Infrastructure
for Computing.
REFERENCES
■
(1) (a) Larock, R. In Comprehensive Organic Transformations, 2nd ed.;
Wiley-VCH: New York, 1999. (b) Mulzer, J. In Comprehensive Organic
Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press: New York,
1992; Vol 6. (c) Otera, J. In Esterification; Wiley-VCH: Weinheim,
2003.
(2) For reviews, see: (a) Otera, J. Chem. Rev. 1993, 93, 1449.
(b) Hoydonckx, H. E.; De Vos, D. E.; Chavan, S. A.; Jacobs, P. A. Top.
Catal 2004, 27, 83. (c) Grasa, G. A.; Singh, R.; Nolan, S. P. Synthesis
2004, 971. (d) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev.
2007, 107, 5606.
(3) For selected recent examples, see: (a) Ramalinga, K.;
(22) Houghton, R. P.; Mulvaney, A. W. J. Organomet. Chem. 1996,
Vijayalakshmi, P.; Kaimal, T. N. B. Tetrahedron Lett. 2002, 43, 879.
517, 107.
6198
dx.doi.org/10.1021/ja400367h | J. Am. Chem. Soc. 2013, 135, 6192−6199