ChemComm
Communication
Sid. V. Bhosale thanks the DAE-BRNS, Mumbai, India, for
financial support under the project no. 2009/37/39/BRNS.
Notes and references
1 J.-M. Lehn, Supramolecular Chemistry: Concepts and Perspectives,
Wiley-VCH, Weinheim, 1995.
2 S. S. Babu, S. S. Prasanthkumar and A. Ajayaghosh, Angew. Chem.,
Int. Ed., 2012, 51, 1766; S. Yagai, T. Seki, T. Karatsu, A. Kitamura and
F. Wu¨rthner, Angew. Chem., Int. Ed., 2008, 47, 3367; C. A. Mirkin,
R. L. Letsinger, R. C. Mucic and J. J. Storhoff, Nature, 1996, 382, 607;
X. Zhang, S. Rehm, M. M. Safont-Sempere and F. Wu¨rthner, Nat.
Chem., 2009, 1, 623; T. Aida, E. W. Meijer and S. I. Stupp, Science,
2012, 335, 813.
Fig. 4 (a) TEM micrograph of the mixture of 1 and D-arginine (1 : 2 ratio, 1–10À4 M)
deposited onto the carbon-coated copper grid, and (b) the dynamic light scattering
(DLS) of the above mixture.
3 S. Ghosh, X.-Q. Li, V. Stepanenko and F. Wu¨rthner, Chem.–Eur. J.,
2008, 14, 11343.
4 H. E. Katz, A. J. Lovinger, C. Kloc, T. Slegrist, W. Li, Y.-Y. Lin and
A. Dodabalapur, Nature, 2000, 404, 478.
5 S. V. Bhosale, C. Jani and S. Langford, Chem. Soc. Rev., 2008, 37, 331.
6 M. Pandeeswar, M. B. Avinash and T. Govindaraju, Chem.–Eur. J.,
2012, 18, 4818.
7 M. Kumar, N. Jonnalagadda and S. J. George, Chem. Commun., 2012,
48, 10948.
8 E. Castaldelli, E. R. Tribonib and G. J.-F. Demets, Chem. Commun.,
2011, 47, 5581.
9 S. Brochsztain, M. A. Rodrigues, G. J. F. Demets and M. J. Polit,
J. Mater. Chem., 2002, 12, 1250.
10 M. R. Molla, A. Das and S. Ghosh, Chem.–Eur. J., 2010, 16, 10084.
11 H. Shao, J. J. Helmus, C. P. Jaroniec, D. A. Modarelli and
J. R. Parquette, Angew. Chem., Int. Ed., 2010, 49, 7688.
12 Y. Che, A. Datar, K. Balakrishnan and L. Zang, J. Am. Chem. Soc.,
2007, 129, 7234.
13 P. Mukhopadhyay, Y. Iwashita, M. Shirakawa, S. Kawano, N. Fujita
and S. Shinkai, Angew. Chem., Int. Ed., 2006, 45, 1592.
14 H. Shao and J. R. Parquette, Chem. Commun., 2010, 46, 4285.
15 S. Hagihara, L. Gremaud, G. Bollot, J. Mareda and S. Matile, J. Am.
Chem. Soc., 2008, 130, 4347.
16 M. Kumar and S. J. George, Nanoscale, 2011, 3, 2130.
17 S. V. Bhosale, S. V. Bhosale, M. B. Kalyankar and S. J. Langford, Org.
Lett., 2009, 11, 5418.
18 R. Bhosale, V. Ravikumar, E. Vauthey, J. Misek, N. Sakai and
S. Matile, Chem. Soc. Rev., 2010, 39, 138.
19 Y. Che, A. Datar, X. Yang, T. Naddo, J. Zhao and L. Zang, J. Am.
Chem. Soc., 2007, 129, 6354.
20 R. Iwaura and M. Ohnishi-Kameyama, Chem. Commun., 2012,
48, 6633; R. Iwaura, M. Ohnishi-Kameyama and T. Shimizu, Chem.
Commun., 2008, 5770; T. E. Clark, M. Makha, A. N. Sobolev, D. Su,
H. Rohrs, M. L. Gross and C. L. Raston, Cryst. Growth Des., 2009,
9, 3575; E. Biavardi, G. Battistini, M. Montalti, R. M. Yebeutchou,
L. Prodi and E. Dalcanale, Chem. Commun., 2008, 1638; S. V. Bhosale,
M. B. Kalyankar, S. V. Nalage, C. H. Lalander, S. V. Bhosale and
S. J. Langford, Int. J. Mol. Sci., 2011, 12, 1464.
21 S. Neidle, Nucleic Acid Structure and Recognition, Oxford University
Press, Oxford, 2002.
22 C. Renner, J. Piehler and T. Schrader, J. Am. Chem. Soc., 2006,
128, 620; M. Fokkens, T. Schrader and F.-G. Klarner, J. Am. Chem.
Soc., 2005, 127, 14415.
spherical aggregates was observed at B110 nm with a poly-
dispersity index of 0.11 (Fig. 4b). The hydrodynamic radius (Rh)
of the spherical aggregates derived from the characteristic line
width was calculated by the CONTIN analysis method.26
SEM and atomic force microscopy (AFM) further support the
self-assembly of 1 with 2 equiv. of D-arginine that aggregates
into a spherical form (Fig. S5 and S6 in ESI†). The average
diameter of the spherical aggregates observed using SEM and
AFM is 50–150 nm and 11–30 nm, respectively, which was
notably smaller than that observed in TEM analysis (see
Fig. 4 for the TEM micrograph). This may be due to the high
local force applied by the AFM tip.27
Importantly and from a molecular recognition issue, Phos–NDI
itself or L-/D-arg alone or even a premixed solution of 1 and L-lysine
failed to give any well-defined nanostructures at any pH indicating
the subtleties of the self-assembly process, which may be due to lack
of H-hydrogen bonding (Fig. S7, ESI†). Importantly, nanostructures
of Phos–NDI with L or D-arg were only observed at pH 9, as lowering
the pH does not produce any nanostructures (Fig. S8, ESI†).
Although the self-assembly is predominantly driven by p–p stacking
interactions between NDI cores, electrostatic interactions and chir-
ality play an important role in the formation of each stack at pH 9
in water (Fig. 1). We believe that self-assembly of 1 with L-arg leads
to nanobelt formation mainly due to two reasons: (i) molecular
conformation of two independent L-arg molecules arranged in a
head to tail manner and superimposed directly i.e. adjacent
molecules are linked by two N–HÁÁÁO hydrogen bonds between
the guanidium tail of one molecule and the carboxylate head of the
adjacent molecule28 and (ii) the ‘‘arginine fork’’ type arrangement
would help in recognising PhosÀÁÁÁarg+ÁÁÁPhosÀ units.29 On the
other hand, in the case of D-arg, only PhosÀÁÁÁarg+ molecular
interactions may occur (Fig. S10 and Scheme S1, ESI†).
¨
23 C. Roger and F. Wu¨rthner, J. Org. Chem., 2007, 72, 8070.
In conclusion, we have demonstrated the self-assembly
behaviour of a phosphonic acid appended naphthalene diimide
with L- and D-arg, which forms well-defined nanobelts and
spherical aggregates in water at pH 9, respectively, via chirality
induced molecular recognitions. The perfect morphological
features of the nanostructures of NDI–arginine complexes
may make them attractive for nano- and biomaterial research.
We also believe that the assembly concept reported in this
communication would be a valuable tool to identify protein
surface areas by distinctive sequence specific self-assembly.
24 T. Hayashi, T. Aya, M. Nonoguchi, T. Mizutani, Y. Hisaeda,
S. Kitagawa and H. Ogoshi, Tetrahedron, 2002, 58, 2803.
25 M. Zhang, Z. Wang, G. Xi, D. Ma, R. Zhang and Y. Qian, J. Cryst.
Growth, 2004, 268, 15.
26 S. W. Provencher, J. Chem. Phys., 1976, 64, 2772.
27 S. V. Bhosale, C. H. Jani, C. H. Lalander, S. J. Langford, I. Nerush,
J. G. Shapter, D. Villamaina and E. Vauthey, Chem. Commun., 2011,
47, 8226.
28 E. Courvoisier, P. A. Williams, G. K. Lim, C. E. Hughes and K. D. M.
Harris, Chem. Commun., 2012, 48, 2761.
29 R. M. Gschwind, M. Armbruster and I. Z. Zubrzycki, J. Am. Chem.
Soc., 2004, 126, 10228.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.