Organic Letters
Letter
Science 2014, 345, 437. (c) Noble, A.; McCarver, S. J.; MacMillan, D. W.
C. J. Am. Chem. Soc. 2015, 137, 624. (d)Primer, D. N.;Karakaya, I.;Tellis,
J. C.; Molander, G. A. J. Am. Chem. Soc. 2015, 137, 2195. (e) Jouffroy, M.;
Primer, D. N.; Molander, G. A. J. Am. Chem. Soc. 2016, 138, 475. (f) Joe,
C. L.; Doyle, A. G. Angew. Chem., Int. Ed. 2016, 55, 4040. (g) Zuo, Z.;
Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2016, 138, 1832. (h) For a review, see: Cavalcanti, L. N.; Molander,
G. A. Top. Curr. Chem. 2016, 374, 39.
(7) (a) Swift, E. C.; Jarvo, E. R. Tetrahedron 2013, 69, 5799.
(b) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015,
115, 9587.
(8) (a) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc.
2013, 135, 7442. (b) Cherney, A. H.; Reisman, S. E. J. Am. Chem. Soc.
2014, 136, 14365.
(9) Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2015, 137, 10480.
(10) (a) Okada, K.; Okamoto, K.; Oda, M. J. Am. Chem. Soc. 1988, 110,
8736. (b) Okada, K.;Okamoto, K.; Morita, N.;Okubo, K.; Oda, M. J. Am.
Chem. Soc. 1991, 113, 9401.
(11) (a) Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.;
Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J.
Am. Chem. Soc. 2016, 138, 2174. (b) Qin, T.; Cornella, J.; Li, C.; Malins,
L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.;
Baran, P. S. Science 2016, 352, 801. (c) Wang, J.; Qin, T.; Chen, T.-G.;
Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P.
S. Angew. Chem., Int. Ed. 2016, 55, 9676.
Author Contributions
‡N.S. and J.L.H. contributed equally to this work.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
WethankthefollowingCaltechstafffortheirhelp:Dr. ScottVirgil
of the Caltech Center for Catalysis and Chemical Synthesis for
access to experimental and analytical equipment; Dr. Michael K.
Takase and Larry M. Henling for assistance in collecting X-ray
diffraction data; and Dr. Mona Shahgholi and Naseem Torian for
assistance with mass spectrometry measurements. We also thank
Kevin Sokol and Dr. Alan Cherney (both of Caltech) for
preparing NHP esters 6g and 6h and vinyl bromides 1g, 1h, and
1l, respectively. Fellowship support was provided by the National
Science Foundation (graduate research fellowship to J.L.H. and
K.E.P., Grant No. DGE-1144469) and Shionogi & Co., Ltd.
(postdoctoral fellowship to N.S.). S.E.R. is an American Cancer
Society Research Scholar and Heritage Medical Research
Institute Investigator. Financial support from the NIH
(NIGMS RGM097582-01, R35GM118191) is gratefully ac-
knowledged.
(12) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.;
Spiewak, A.M.;Johnson, K. A.;DiBenedetto, T. A.;Kim,S.;Ackerman,L.
K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.
REFERENCES
■
(1) For recent reviews, see: (a) Jana, R.; Pathak, T. P.; Sigman, M. S.
Chem. Rev. 2011, 111, 1417. (b) Hu, X. Chem. Sci. 2011, 2, 1867.
(c) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
(d) Ananikov, V. P. ACS Catal. 2015, 5, 1964. (e) Netherton, M. R.; Fu,
G. C. Adv. Synth. Catal. 2004, 346, 1525.
(13) The hydroalkylation of alkenes using NHP esters was also recently
reported: Lu, X.; Xiao, B.; Liu, L.; Fu, Y. Chem. - Eur. J. 2016, 22, 11161.
(14) Review on recent Ni-catalyzed cross-couplings with NHP esters:
Konev, M. O.; Jarvo, E. R. Angew. Chem., Int. Ed. 2016, 55, 11340.
(15) Weix and coworkers recently reported the use of TDAE as an
organic reductant for the reductive cross-coupling of benzyl chlorides
and aryl iodides: Anka-Lufford, L. L.; Huihui, K. M. M.; Gower, N. J.;
Ackerman, L. K. G.; Weix, D. J. Chem. - Eur. J. 2016, 22, 11564.
(16) (a) Takagi, K.; Hayama, N.; Inokawa, S. Chem. Lett. 1978, 7, 1435.
(b) Tsou, T. T.; Kochi, J. K. J. Org. Chem. 1980, 45, 1930.
(17) The reaction mixture freezes at temperatures lower than − 8 °C.
(18) In the coupling of (1-chloroethyl)-benzene, TDAE provides low
yield of the cross-coupled product (23% yield and 94% ee).
(20) The role of TMSBr under the optimal conditions, which do not
employ a metal reductant, is unclear. TMSCl has been proposed to
activate Mn or Zn: (a) Everson, D. A.; Jones, B. A.; Weix, D. J. J. Am.
Chem. Soc. 2012, 134, 6146. (b) Johnson, K. A.; Biswas, S.; Weix, D. J.
Chem. - Eur. J. 2016, 22, 7399. Also see ref 9.
(21) Example conditions: (a) 1-(4-(dimethylamino)phenyl)ethan-1-ol
(1 equiv), SOCl2 (1.2 equiv), CH2Cl2, 0 °C, 15 min; (b) 1-(4-
(dimethylamino)phenyl)ethan-1-ol (1 equiv), CCl4 (1.5 equiv), PPh3
(1.4 equiv), CH2Cl2, rt, 12 h.
(22) (a) Beckwith, A. L. J.; Bowry, V. W. J. Am. Chem. Soc. 1994, 116,
2710. (b) Halgren, T. A.; Roberts, J. D.; Horner, J. H.; Martinez, F. N.;
Tronche, C.; Newcomb, M. J. Am. Chem. Soc. 2000, 122, 2988. The rate
constants for ring opening (ko) and ring closing (kc) at 20 °C are given
below.
(2) Seminal reports of Ni-catalyzed Negishi cross-couplings with
C(sp3) electrophiles: (a) Park, K.; Yuan, K.; Scott, W. J. J. Org. Chem.
1993, 58, 4866. (b) Devasagayaraj, A.; Studemann, T.; Knochel, P.
Angew. Chem., Int. Ed. Engl. 1996, 34, 2723. (c) Giovannini, R.;
̈
Studemann, T.; Dussin, G.; Knochel, P. Angew. Chem., Int. Ed. 1998, 37,
̈
2387. (d) Giovannini, R.; Knochel, P. J. Am. Chem. Soc. 1998, 120, 11186.
(e) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726. (f) Terao, J.;
Todo, H.; Watanabe, H.; Ikumi, A.; Kambe, N. Angew. Chem., Int. Ed.
2004, 43, 6180. (g) Fischer, C.; Fu, G. C. J. Am. Chem. Soc. 2005, 127,
4594. (h) Arp, F. O.; Fu, G. C. J. Am. Chem. Soc. 2005, 127, 10482.
(3) Seminal reports of Ni-catalyzed Kumada cross-couplings with
C(sp3) electrophiles: (a) Terao, J.; Watanabe, H.; Ikumi, A.; Kuniyasu,
H.; Kambe, N. J. Am. Chem. Soc. 2002, 124, 4222. (b) Terao, J.; Ikumi, A.;
Kuniyasu, H.; Kambe, N. J. Am. Chem. Soc. 2003, 125, 5646.
(c) Vechorkin, O.; Hu, X. Angew. Chem., Int. Ed. 2009, 48, 2937.
(d) Vechorkin, O.; Proust, V.; Hu, X. J. Am. Chem. Soc. 2009, 131, 9756.
(e) Lou, S.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 1264.
(4) Seminal reports of Ni-catalyzed Suzuki cross-couplings with C(sp3)
electrophiles: (a) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340.
́
(b) Gonzalez-Bobes, F.; Fu, G. C. J. Am. Chem. Soc. 2006, 128, 5360.
(c)Saito, B.;Fu, G. C. J. Am. Chem. Soc. 2007, 129, 9602. (d) Saito, B.;Fu,
G. C. J. Am. Chem. Soc.2008, 130,6694. (e)Lundin, P.M.;Fu, G. C. J. Am.
Chem. Soc. 2010, 132, 11027.
(5) Seminal reports of Ni-catalyzed cross-electrophile couplings:
(a) Durandetti, M.; Gosmini, C.; Perichon, J. Tetrahedron 2007, 63,
1146. (b) Everson, D. A.; Shrestha, R.; Weix, D. J. J. Am. Chem. Soc. 2010,
132, 920. (c) Yu, X.; Yang, T.; Wang, S.; Xu, H.; Gong, H. Org. Lett. 2011,
13, 2138. For reviews, see: (d) Everson, D. A.; Weix, D. J. J. Org. Chem.
2014, 79, 4793. (e) Knappke, C. E. I.; Grupe, S.; Gartner, D.; Corpet, M.;
Gosmini, C.; Jacobi von Wangelin, A. Chem. - Eur. J. 2014, 20, 6828.
(f) Moragas, T.; Correa, A.; Martin, R. Chem. - Eur. J. 2014, 20, 8242.
(g) Weix, D. J. Acc. Chem. Res. 2015, 48, 1767. (h) Gu, J.; Wang, X.; Xue,
W.; Gong, H. Org. Chem. Front. 2015, 2, 1411. (i) Wang, X.; Dai, Y.;
Gong, H. Top. Curr. Chem. 2016, 374, 43.
(23) For a related study, see: Biswas, S.; Weix, D. J. J. Am. Chem. Soc.
2013, 135, 16192−16197.
(24) Molander and Kozlowski have calculated that the reductive
elimination is the stereochemistry-determining step in a related Ni-
catalyzed cross-coupling reaction of aryl halides with benzyl trifluor-
oborates.
(6) Selected examples of dual photoredox nickel catalysis: (a) Tellis, J.
C.; Primer, D. N.; Molander, G. A. Science 2014, 345, 433. (b) Zuo, Z.;
Ahneman, D. T.;Chu, L.;Terrett, J. A.;Doyle, A. G.;MacMillan, D. W. C.
D
Org. Lett. XXXX, XXX, XXX−XXX